Skip to main content
Log in

Phase transformation at controlled locations in nanowires by in situ electron irradiation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Solid state phase transformations have drawn great attention because they can be effectively exploited to control the microstructure and property of materials. Understanding the physics of such phase transformation processes is critical to designing materials with controlled structure and with desired properties. However, in traditional ex situ experiments, it is hard to achieve position controlled phase transformations or obtain desirable crystal phase on nanometer scale. Meanwhile the underlying mechanisms of the reaction processes are not fully understood due to the lack of direct and real-time observation. In this paper, we observe phase transformation from body-centered tetragonal PX-PbTiO3 to monoclinic TiO2(B) on the atomic scale by in situ electron irradiation during heat treatment in transmission electron microscope, at pre-defined locations on the sample. We demonstrate that by controlling the location of the incident electron beam, a porous TiO2(B) crystal structure can be formed at the desired area on the nanowire, which is difficult to achieve by traditional synthesis methods. Upon in situ heating, the Pb atoms in the crystal migrate out of the pristine nanowire through inelastic scattering under incident electrons while high temperature(> 400 °C) provides energy for the crystallization of TiO2(B) and the volatilization of a substantial number of Pb atoms, which makes the resultingTiO2(B) nanowires to be porous. In contrast, at temperatures 400 °C, the segregated Pb atoms form Pb particles and the TiOx nanowires remain in the amorphous state. This work not only provides in situ visualization of the phase transition from the PX-PbTiO3 to monoclinic TiO2(B), but also suggests a crystallography engineering strategy to obtain the desired crystal phase at controlled locations on the nanometer scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, X.; Liu, Z. Q.; Millet, M. M.; Dong, J. C.; Plodine, M.; Ding, E.; Schlögl, R.; Willinger, M. G. In situ atomic-scale observation of surface-tension-induced structural transformation of Ag-NiP, core-shell nanocrystals. ACS Nano2018, 12, 7197–7205.

    CAS  Google Scholar 

  2. Zhang, Z.; Liu, N. S.; Li, L. Y.; Su, J.; Chen, P. P.; Lu, W.; Gao, Y. H.; Zou, J. In situ TEM observation of crystal structure transformation in InAs nanowires on atomic scale. Nana Lett.2018, 18, 6597–6603.

    CAS  Google Scholar 

  3. Wang, J.; Durussel, A.; Sandu, C. S.; Sahini, M. G.; He, Z. B.; Setter, N. Mechanism of hydrothermal growth of ferroelectric PZT nanowires. J. Cryst. Growth2012, 347, 1–6.

    CAS  Google Scholar 

  4. Xiao, Z.; Ren, Z. H.; Xia, Y.; Liu, Z. Y.; Xu, G.; Li, X.; Shen, G.; Han, G. R. Doping and phase transformation of single-crystal pre-perovskite PbTiO3 fibers with TiO6 edge-shared octahedra. CrystEngComm2012, 14, 4520–4524.

    CAS  Google Scholar 

  5. Liu, Y.; Wang, H.; Zhang, X. In situ TEM nanoindentation studies on stress-induced phase transformations in metallic materials. JOM2016, 68, 226–234.

    CAS  Google Scholar 

  6. Wang, J.; Wylie-van Eerd, B.; Sluka, T.; Sandu, C.; Cantoni, M.; Wei, X. K.; Kvasov, A.; McGilly, L. J.; Gemeiner, P.; Dkhil, B. et al. Negative-pressure-induced enhancement in a freestanding ferroelectric. Nat. Mater.2015, 14, 985–990.

    CAS  Google Scholar 

  7. Zhu, G. N.; Wang, C. X.; Xia, Y. Y. Structural transformation of layered hydrogen trititanate (H2Ti307) to TiO2(B) and its electrochemical profile for lithium-ion intercalation. J. Power Sources2011, 196, 2848–2853.

    CAS  Google Scholar 

  8. Li, W.; Bai, Y.; Liu, C.; Yang, Z. H.; Feng, X.; Lu, X. H.; van der Laak, N. K.; Chan, K. Y. Highly thermal stable and highly crystalline anatase TiO2 for photocatalysis. Environ. Sci. Technol.2009, 43, 5423–5428.

    CAS  Google Scholar 

  9. Liu, X. E.; Xu, T.; Wu, X.; Zhang, Z. H.; Yu, J.; Qiu, H.; Hong, J. H.; Jin, C. H.; Li, J. X.; Wang, X. R. et al. Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat. Commun.2013, 4, 1776.

    Google Scholar 

  10. Xu, T.; Xie, X.; Yin, K. B.; Sun, J.; He, L. B.; Sun, L. T. Controllable atomic-scale sculpting and deposition of carbon nanostructures on graphene. Small2014, 10, 1724–1728.

    CAS  Google Scholar 

  11. Zhu, J. E.; Zhang, J. L.; Chen, E.; Anpo, M. Preparation of high photocatalytic activity TiO2 with a bicrystalline phase containing anatase and TiO2(B). Mater. Lett.2005, 59, 3378–3381.

    CAS  Google Scholar 

  12. Durandurdu, M. Two successive amorphous-to-amorphous phase transformations in TiO2. J.Am. Ceram. Soc.2017, 700, 3903–3911.

    Google Scholar 

  13. Lei, Y. M.; Li, J.; Wang, Z.; Sun, J.; Chen, F. Y.; Liu, H. W.; Ma, X. H.; Liu, Z. W. Atomic-scale investigation of a new phase transformation process in TiO2 nanofibers. Nanoscale2017, 9, 4601–4609.

    CAS  Google Scholar 

  14. Pan, X. Y.; Ma, X. M. Study on the milling-induced transformation in TiO2 powder with different grain sizes. Mater. Lett.2004, 58, 513–515.

    CAS  Google Scholar 

  15. Yang, J.; Gao, M. Z.; Jiang, S. B.; Huo, X. J.; Xia, R. Hysteretic phase transformation of two-dimensional TiO2. Mater. Lett.2018, 232, 171–174.

    CAS  Google Scholar 

  16. Gao, M.; Bao, Y. B.; Qian, Y. X.; Deng, Y. E.; Li, Y. W.; Chen, G. H. Porous anatase-TiO2(B) dual-phase nanorods prepared from in situ pyrolysis of a single molecule precursor offer high performance lithiumion storage. Inorg. Chem.2018, 57, 12245–12254.

    CAS  Google Scholar 

  17. Giannuzzi, R.; Manca, M.; De Marco, L.; Belviso, M. R.; Cannavale, A.; Sibillano, T.; Giannini, C.; Cozzoli, P. D.; Gigli, G. Ultrathin TiO2(B) nanorods with superior lithium-ion storage performance. ACS Appl. Mater. Interfaces2014, 6, 1933–1943.

    CAS  Google Scholar 

  18. Zukalová M.; Kalbác, M.; Kavan, L.; Exnar, I.; Graetzel, M. Pseudocapacitive lithium storage in TiO2(B). Chem. Mater.2005, 17, 1248–1255.

    Google Scholar 

  19. Liu, S. H.; Jia, H. P.; Han, L.; Wang, J. L.; Gao, P. E.; Xu, D. D.; Yang, J.; Che, S. N. Nanosheet-constructed porous TiO2-B for advanced lithium ion batteries. Adv. Mater.2012, 24, 3201–3204.

    CAS  Google Scholar 

  20. Wang, G.; Wang, Q.; Lu, W.; Li, J. H. Photoelectrochemical study on charge transfer properties of TiO2-B nanowires with an application as humidity sensors. J. Phys. Chem. B2006, 770, 22029–22034.

    Google Scholar 

  21. Liu, H. S.; Bi, Z. H.; Sun, X. G.; Unocic, R. R.; Paranthaman, M. P.; Dai, S.; Brown, G. M. Mesoporous TiO2-B microspheres with superior rate performance for lithium ion batteries. Adv. Mater.2011, 23, 3450–3454.

    CAS  Google Scholar 

  22. Marchand, R.; Brohan, L.; Tournoux, M. TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Mater. Res. Bull.1980, 75, 1129–1133.

    Google Scholar 

  23. Kobayashi, M.; Petrykin, V. V.; Kakihana, M.; Tomita, K.; Yoshimura, M. One-step synthesis of TiO2(B) nanoparticles from a water-soluble titanium complex. Chem. Mater.2007, 19, 5373–5376.

    CAS  Google Scholar 

  24. Sugimoto, W.; Terabayashi, O.; Murakami, Y.; Takasu, Y. Electrophoretic deposition of negatively charged tetratitanate nanosheets and transformation into preferentially oriented TiO2(B) film. J. Mater. Chem.2002, 12, 3814–3818.

    CAS  Google Scholar 

  25. Cai, Y.; Wang, H. E.; Huang, S. Z.; Jin, J.; Wang, C.; Yu, Y.; Li, Y.; Su, B. L. Hierarchical nanotube-constructed porous TiO2-B spheres for high performance lithium ion batteries. Sci. Rep.2015, 5, 11557.

    CAS  Google Scholar 

  26. Zhao, B.; Chen, E.; Liu, H. Q.; Zhang, J. L. Mesoporous TiO2-B nanowires synthesized from tetrabutyl titanate. J. Phys. Chem. Solids2011, 72, 201–206.

    CAS  Google Scholar 

  27. Li, X. D.; Wu, G. X.; Liu, X.; Li, W.; Li, M. C. Orderly integration of porous TiO2(B) nanosheets into bunchy hierarchical structure for high-rate and ultralong-lifespan lithium-ion batteries. Nano Energy2017, 31, 1–8.

    CAS  Google Scholar 

  28. Lei, Y. M.; Sun, J.; Liu, H. W.; Cheng, X.; Chen, F. Y.; Liu, Z. W. Atomic mechanism of predictable phase transition in dual-phase H2Ti307/TiO2 (B) nanofiber: An in situ heating TEM investigation. Chem.-Eur. J.2014, 20, 11313–11317.

    CAS  Google Scholar 

  29. Ben Yahia, M.; Lemoigno, R.; Beuvier, T.; Filhol, J. S.; Richard-Plouet, M.; Brohan, L.; Doublet, M. L. Updated references for the structural, electronic, and vibrational properties of TiO2(B) bulk using first-principles density functional theory calculations. J. Chem. Phys.2009, 130, 204501.

    Google Scholar 

  30. Ren, Z. H.; Xu, G.; Liu, Y.; Wei, X.; Zhu, Y. H.; Zhang, X. B.; Lv, G. L.; Wang, Y. W.; Zeng, Y. W.; Du, P. Y. et al. PbTiO, nanofibers with edge-shared TiO6 octahedra. J. Am. Chem. Soc.2010, 132, 5572–5573.

    CAS  Google Scholar 

  31. Wang, J.; Schenk, K.; Carvalho, A.; Eerd, B. W. V.; Trodahl, J.; Sandu, C. S.; Bonin, M.; Gregora, I.; He, Z. B.; Yamada, T. et al. Structure determination and compositional modification of body-centered tetragonal PX-phase lead titanate. Chem. Mater.2011, 23, 2529–2535.

    CAS  Google Scholar 

  32. Light, T. B.; Eldridge, J. M.; Matthews, J. W.; Greiner, J. H. Structure of thin lead oxide layers as determined by X-ray diffraction. J. Appl. Phys.1975, 46, 1489–1492.

    CAS  Google Scholar 

  33. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Lead oxide nanobelts and phase transformation induced by electron beam irradiation. Appl. Phys. Lett.2002, 80, 309–311.

    CAS  Google Scholar 

  34. Knotek, M. L.; Feibelman, P. J. Stability of ionically bonded surfaces in ionizing environments. Surf. Sci.1979, 90, 78–90.

    CAS  Google Scholar 

  35. Gonzalez-Martinez, I. G.; Bachmatiuk, A.; Bezugly, V.; Kunstmann, J.; Gemming, T.; Liu, Z.; Cuniberti, G.; Rümmeli, M. H. Electron-beam induced synthesis of nanostructures: A review. Nanoscale2016, 8, 11340–11362.

    CAS  Google Scholar 

  36. Bachmatiuk, A.; Dianat, A.; Ortmann, R.; Quang, H. T.; Cichocka, M. O.; Gonzalez-Martinez, I.; Fu, L.; Rellinghaus, B.; Eckert, J.; Cuniberti, G et al. Graphene coatings for the mitigation of electron stimulated desorption and fullerene cap formation. Chem. Mater.2014, 26, 4998–5003.

    CAS  Google Scholar 

  37. Citrin, P. H. Interatomic auger processes: Effects on lifetimes of core hole states. Phys. Rev. Lett.1973, 31, 1164–1167.

    CAS  Google Scholar 

  38. Dang, Z. Y.; Shamsi, J.; Palazon, E.; Imran, M.; Akkerman, Q. A.; Park, S.; Bertoni, G.; Prato, M.; Brescia, R.; Manna, L. In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals. ACS Nana2017, 11, 2124–2132.

    CAS  Google Scholar 

  39. El Mel, A. A.; Molina-Luna, L.; Buffière, M.; Tessier, P. Y.; Du, K.; Choi, C. H.; Kleebe, H. J.; Konstantinidis, S.; Bittencourt, C.; Snyders, R. Electron beam nanosculpting of kirkendall oxide nanochannels. ACS Nano2014, 8, 1854–1861.

    CAS  Google Scholar 

  40. Li, Y. X.; Bunes, B. R.; Zang, L.; Zhao, J.; Li, Y.; Zhu, Y. Q.; Wang, C. Y. Atomic scale imaging of nucleation and growth trajectories of an interfacial bismuth nanodroplet. ACS Nano2016, 10, 2386–2391.

    CAS  Google Scholar 

  41. da Silva Pereira, W.; Andres, J.; Gracia, L.; San-Miguel, M. A.; da Silva, E. Z.; Longo, E.; Longo, V. M. Elucidating the real-time Ag nanoparticle growth on a-Ag2W04 during electron beam irradiation: Experimental evidence and theoretical insights. Phys. Chem. Chem. Phys.2015, 17, 5352–5359.

    Google Scholar 

  42. Sepulveda-Guzman, S.; Elizondo-Villarreal, N.; Ferrer, D.; Torres-Castro, A.; Gao, X.; Zhou, J. P.; Jose-Yacaman, M. In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope. Nanotechnology2007, 18, 335604.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 11327901, 11525415, 51420105003, 61974021, 51972058, and 11774051) and the Fundamental Research Funds for the Central Universities (No. 2242018K41020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Xu or Litao Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wang, W., Xu, T. et al. Phase transformation at controlled locations in nanowires by in situ electron irradiation. Nano Res. 13, 1912–1919 (2020). https://doi.org/10.1007/s12274-020-2711-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2711-2

Keywords

Navigation