Skip to main content
Log in

Superatomic Au13 clusters ligated by different N-heterocyclic carbenes and their ligand-dependent catalysis, photoluminescence, and proton sensitivity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report herein a class of superatomic Au13 clusters stabilized by different N-heterocyclic carbenes (NHCs). The clusters show diverse metal surface structures, properties and functions as exemplified by: (1) the first anionic Au13 cluster [Au13(NHC-1)6Br6]-, which has bulky NHC-1 ligands that lead to a rather open metal surface contributing to its high catalytic activity; (2) the tricationic cluster [Au13(NHC-2)5Br2]3+ which has bidentate, benzyl-rich NHC-2 ligands that make it ultra-stable and highly-luminescent, suitable for bio-imaging; and (3) by bearing two pyridyl groups on NHC-3, the dicationic cluster [Au13(NHC-3)9CI3]2+ exhibits reversible and stable visible absorption and solubility responses to protonation/deprotonation cycles, making it a potential pH sensor (NHC-1 = 1,3-diisopropylbenzimidazolin-2-ylidene; NHC-2 = 1,3-bis(1-benzyl-1H-benzimidazol-1-ium-3-yl)propane; NHC-3 = 1,3-bis(picolyl)benzimidazolin-2-ylidene). The study nicely demonstrates the importance of ligands in designing metal nanoclusters with desired functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev.2016, 116, 10346–10413.

    Article  CAS  Google Scholar 

  2. Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev.2017, 117, 8208–8271.

    Article  CAS  Google Scholar 

  3. Yan, J. Z.; Teo, B. K.; Zheng, N. F. Surface chemistry of atomically precise coinage-metal nanoclusters: From structural control to surface reactivity and catalysis. Ace. Chem. Res.2018, 57, 3084–3093.

    Article  Google Scholar 

  4. Shang, L.; Azadfar, N.; Stockmar, R.; Send, W.; Trouillet, V.; Brans, M.; Gerthsen, D.; Nienhaus, G. U. One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging. Small2011, 7, 2614–2620.

    Article  CAS  Google Scholar 

  5. Raut, S. L.; Fudala, R.; Rich, R.; Kokate, R. A.; Chib, R.; Gryczynski, Z.; Gryczynski, I. Long lived BSA Au clusters as a time gated intensity imaging probe. Nanoscale2014, 6, 2594–2597.

    Article  CAS  Google Scholar 

  6. Xie, J. P.; Zheng, Y. G.; Ying, J. Y. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+-Au+ interactions. Chem. Commun.2010, 46, 961–963.

    Article  CAS  Google Scholar 

  7. Roy, S.; Palui, G.; Banerjee, A. The as-prepared gold cluster-based fluorescent sensor for the selective detection of As111 ions in aqueous solution. Nanoscale2012, 4, 2734–2740.

    Article  CAS  Google Scholar 

  8. Wang, Y.; Wan, X. K.; Ren, L. T.; Su, H. R.; Li, G.; Malola, S.; Lin, S. C.; Tang, Z. C.; Hakkinen, H.; Teo, B. K. et al. Atomically precise alkynyl-protected metal nanoclusters as a model catalyst: Observation of promoting effect of surface ligands on catalysis by metal nanoparticles. J. Am. Chem. Soc.2016, 138, 3278–3281.

    Article  CAS  Google Scholar 

  9. Wan, X. K.; Wang, J. Q.; Nan, Z. A.; Wang, Q. M. Ligand effects in catalysis by atomically precise gold nanoclusters. Sci. Adv.2017, 3, e1701823.

    Article  Google Scholar 

  10. Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Ace. Chem. Res.2013, 46, 1749–1758.

    Article  CAS  Google Scholar 

  11. Yamazoe, S.; Koyasu, K.; Tsukuda, T. Nonscalable oxidation catalysis of gold clusters. Ace. Chem. Res.2014, 47, 816–824.

    Article  CAS  Google Scholar 

  12. Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Antimicrobial gold nanoclusters. ACSNano2017, 77, 6904–6910.

    Google Scholar 

  13. Wang, Y. C.; Wang, Y.; Zhou, F. B.; Kim, P.; Xia, Y. N. Protein-protected Au clusters as a new class of nanoscale biosensor for label-free fluorescence detection of proteases. Small2012, 8, 3769–3773.

    Article  CAS  Google Scholar 

  14. Konishi, K.; Iwasaki, M.; Shichibu, Y. Phosphine-ligated gold clusters with core+exo geometries: Unique properties and interactions at the ligand-cluster interface. Ace. Chem. Res.2018, 51, 3125–3133.

    Article  CAS  Google Scholar 

  15. Tracy, J. B.; Crowe, M. C.; Parker, J. F.; Hampe, O.; Fields-Zinna, C. A.; Dass, A.; Murray, R. W. Electrospray ionization mass spectrometry of uniform and mixed monolayer nanoparticles: Au25ai][S(CH2)2Ph]18 and Au25ai][S(CH2)2Ph]18-x(SR)x. J.Am. Chem. Soc.2007, 729, 16209–16215.

    Article  Google Scholar 

  16. Dass, A.; Stevenson, A.; Dubay, G. R.; Tracy, J. B.; Murray, R. W. Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CF12Ph)18 and mixed monolayer Au25(SCH2CH2Ph)18-x(L)x. J.Am. Chem. Soc.2008, 130, 5940–5946.

    Article  CAS  Google Scholar 

  17. Ren, L. T.; Yuan, P.; Su, H. R.; Malola, S.; Lin, S. C.; Tang, Z. C.; Teo, B. K.; Hakkinen, H.; Zheng, L. S.; Zheng, N. F. Bulky surface ligands promote surface reactivities of ai][Ag141X12(S-Adm)40]3+ (X = CI, Br, I) nanoclusters: Models for multiple-twinned nanoparticles. J.Am. Chem. Soc.2017, 139, 13288–13291.

    Article  CAS  Google Scholar 

  18. Gunawardene, P. N.; Corrigan, J. R.; Workentin, M. S. Golden opportunity: A. clickable azide-functionalized ai][Au25(SR)18]nano-cluster platform for interfacial surface modifications. J. Am. Chem. Soc.2019, 141, 11781–11785.

    Article  CAS  Google Scholar 

  19. Tang, Q.; Jiang, D. E. Comprehensive view of the ligand-gold interface from first principles. Chem. Mater.2017, 29, 6908–6915.

    Article  CAS  Google Scholar 

  20. Munoz-Castro, A. Potential of N-heterocyclic carbene derivatives from Au13(dppe)5Cl2 gold superatoms. Evaluation of electronic, optical and chiroptical properties from relativistic DFT Inorg. Chem. Front.2019, 6, 2349–2358.

    Article  CAS  Google Scholar 

  21. Narouz, M. R.; Osten, K. M.; Unsworth, P. J.; Man, R. W. Y.; Salorinne, K.; Takano, S.; Tomihara, R.; Kaappa, S.; Malola, S.; Dinh, C. T. et al. N-heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat. Chem.2019, 11, 419–425.

    Article  CAS  Google Scholar 

  22. Narouz, M. R.; Takano, S.; Lummis, P. A.; Levchenko, T. I.; Nazemi, A.; Kaappa, S.; Malola, S.; Yousefalizadeh, G.; Calhoun, L. A.; Stamplecoskie, K. G. et al. Robust, highly luminescent AUB superatoms protected by N-heterocyclic carbenes. J. Am. Chem. Soc.2019, 141, 14997–15002.

    Article  CAS  Google Scholar 

  23. Shen, H.; Deng, G. C.; Kaappa, S.; Tan, T. D.; Han, Y. Z.; Malola, S.; Lin, S. C.; Teo, B. K.; Hakkinen, H.; Zheng, N. F. Highly robust but surface-active: N-heterocyclic carbene-stabilized Au25 nanocluster. Angew. Chem., Int. Ed.2019, 58, 17731–17735.

    Article  CAS  Google Scholar 

  24. Smith, C. A.; Narouz, M. R.; Lummis, P. A.; Singh, I.; Nazemi, A.; Li, C. H.; Crudden, C. M. N-Heterocyclic carbenes in materials chemistry. Chem. Rev.2019, 119, 4986–5056.

    Article  CAS  Google Scholar 

  25. Zhukhovitskiy, A. V.; MacLeod, M. J.; Johnson, J. A. Carbene ligands in surface chemistry: From stabilization of discrete elemental allotropes to modification of nanoscale and bulk substrates. Chem. Rev.2015, 115, 11503–11532.

    Article  CAS  Google Scholar 

  26. Mercs, L.; Albrecht, M. Beyond catalysis: N-Heterocyclic carbene complexes as components for medicinal, luminescent, and functional materials applications. Chem. Soc. Rev.2010, 39, 1903–1912.

    Article  CAS  Google Scholar 

  27. Crudden, C. M.; Horton, J. H.; Ebralidze, I. I.; Zenkina, O. V.; McLean, A. B.; Drevniok, B.; She, Z.; Kraatz, H. B.; Mosey, N. J.; Seki, T. et al. Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nat. Chem.2014, 6, 409–414.

    Article  CAS  Google Scholar 

  28. Collado, A.; Gomez-Suarez, A.; Martin, A. R.; Slawin, A. M. Z.; Nolan, S. P. Straightforward synthesis of ai][Au(NHC)X]_(NHC = N-heterocyclic carbene, X. = CI, Br, I) complexes. Chem. Commun.2013, 49, 5541–5543.

    Article  CAS  Google Scholar 

  29. Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Gronbeck, H.; Hakkinen, H. A. unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. USA2008, 105, 9157–9162.

    Article  CAS  Google Scholar 

  30. Gribble, G. W. Naturally occurring organohalogen compounds. Ace. Chem. Res.1998, 31, 141–152.

    Article  CAS  Google Scholar 

  31. Petrone, D. A.; Ye, J. T.; Lautens, M. Modern transition-metal-catalyzed carbon-halogen bond formation. Chem. Rev.2016, 116, 8003–8104.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Key R&D Program of China (No. 2017YFA0207304), the National Nautural Science Foundation of China (Nos. 21890752, 21731005, 21802109, and 21721001), and the fundamental research funds for central universities (No. 20720190043) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanfeng Zheng.

Electronic Supplementary Material

Supplementary material, approximately 2.33 MB.

Supplementary material, approximately 18.3 MB.

Supplementary material, approximately 3.42 MB.

12274_2020_2685_MOESM4_ESM.pdf

Superatomic Au13 clusters ligated by different N-heterocyclic carbenes and their ligand-dependent catalysis, photoluminescence, and proton sensitivity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Xiang, S., Xu, Z. et al. Superatomic Au13 clusters ligated by different N-heterocyclic carbenes and their ligand-dependent catalysis, photoluminescence, and proton sensitivity. Nano Res. 13, 1908–1911 (2020). https://doi.org/10.1007/s12274-020-2685-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2685-0

Keywords

Navigation