Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Bone marrow niches in haematological malignancies

Abstract

Haematological malignancies were previously thought to be driven solely by genetic or epigenetic lesions within haematopoietic cells. However, the niches that maintain and regulate daily production of blood and immune cells are now increasingly being recognized as having an important role in the pathogenesis and chemoresistance of haematological malignancies. Within haematopoietic cells, the accumulation of a small number of recurrent mutations initiates malignancy. Concomitantly, specific alterations of the niches, which support haematopoietic stem cells and their progeny, can act as predisposition events, facilitating mutant haematopoietic cell survival and expansion as well as contributing to malignancy progression and providing protection of malignant cells from chemotherapy, ultimately leading to relapse. In this Perspective, we summarize our current understanding of the composition and function of the specialized haematopoietic niches of the bone marrow during health and disease. We discuss disease mechanisms (rather than malignancy subtypes) to provide a comprehensive description of key niche-associated pathways that are shared across multiple haematological malignancies. These mechanisms include primary driver mutations in bone marrow niche cells, changes associated with increased hypoxia, angiogenesis and inflammation as well as metabolic reprogramming by stromal niche cells. Consequently, remodelling of bone marrow niches can facilitate immune evasion and activation of survival pathways favouring malignant haematopoietic cell maintenance, defence against excessive reactive oxygen species and protection from chemotherapy. Lastly, we suggest guidelines for the handling and biobanking of patient samples and analysis of the niche to ensure that basic research identifying therapeutic targets can be more efficiently translated to the clinic. The hope is that integrating knowledge of how bone marrow niches contribute to haematological disease predisposition, initiation, progression and response to therapy into future clinical practice will likely improve the treatment of these disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Main features of anatomically defined haematopoietic stem cell niches in the mouse bone marrow.
Fig. 2: Bone marrow niche remodelling favours disease progression in haematological malignancies.
Fig. 3: Contributions of the bone marrow niche to survival and chemoresistance of malignant haematopoietic cells.

Similar content being viewed by others

References

  1. Swerdlow, S. H. et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127, 2375–2390 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arber, D. A. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127, 2391–2405 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Huntly, B. J. & Gilliland, D. G. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat. Rev. Cancer 5, 311–321 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Uyl-de Groot, C. A. & Lowenberg, B. Sustainability and affordability of cancer drugs: a novel pricing model. Nat. Rev. Clin. Oncol. 15, 405–406 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Korn, C. & Mendez-Ferrer, S. Myeloid malignancies and the microenvironment. Blood 129, 811–822 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Forte, D., Krause, D. S., Andreeff, M., Bonnet, D. & Mendez-Ferrer, S. Updates on the hematological tumor microenvironment and its therapeutic targeting. Haematologica 104, 1928–1934 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Laurenti, E. & Gottgens, B. From haematopoietic stem cells to complex differentiation landscapes. Nature 553, 418–426 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ding, L. & Morrison, S. J. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495, 231–235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cordeiro Gomes, A. et al. Hematopoietic stem cell niches produce lineage-instructive signals to control multipotent progenitor differentiation. Immunity 45, 1219–1231 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Pinho, S. et al. Lineage-biased hematopoietic stem cells are regulated by distinct niches. Dev. Cell 44, 634–641 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Acar, M. et al. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526, 126–130 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kunisaki, Y. et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502, 637–643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kusumbe, A. P., Ramasamy, S. K. & Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507, 323–328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Asada, N. et al. Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat. Cell Biol. 19, 214–223 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Comazzetto, S. et al. Restricted hematopoietic progenitors and erythropoiesis require SCF from leptin receptor+ niche cells in the bone marrow. Cell Stem Cell 24, 477–486.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mende, N. et al. Prospective isolation of non-hematopoietic cells of the niche and their differential molecular interactions with HSCs. Blood 134, 1214–1226 (2019).

    Article  PubMed  Google Scholar 

  18. Mendez-Ferrer, S. Molecular interactome between HSCs and their niches. Blood 134, 1197–1198 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Beerman, I., Luis, T. C., Singbrant, S., Lo Celso, C. & Mendez-Ferrer, S. The evolving view of the hematopoietic stem cell niche. Exp. Hematol. 50, 22–26 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Itkin, T. et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532, 323–328 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hooper, A. T. et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4, 263–274 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mendez-Ferrer, S., Lucas, D., Battista, M. & Frenette, P. S. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452, 442–447 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Garcia-Garcia, A. et al. Dual cholinergic signals regulate daily migration of hematopoietic stem cells and leukocytes. Blood 133, 224–236 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao, M. et al. N-cadherin-expressing bone and marrow stromal progenitor cells maintain reserve hematopoietic stem cells. Cell Rep. 26, 652–669.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. & Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Mendez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sacchetti, B. et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131, 324–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Ho, Y. H. et al. Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging. Cell Stem Cell 25, 407–418 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Omatsu, Y. et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33, 387–399 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Li, H. et al. Low/negative expression of PDGFR-α identifies the candidate primary mesenchymal stromal cells in adult human bone marrow. Stem Cell Rep. 3, 965–974 (2014).

    Article  CAS  Google Scholar 

  32. Tormin, A. et al. CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood 117, 5067–5077 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Taichman, R. S. & Emerson, S. G. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J. Exp. Med. 179, 1677–1682 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Arai, F. et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Yoshihara, H. et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1, 685–697 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Adams, G. B. et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439, 599–603 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Kinashi, T. & Springer, T. A. Steel factor and c-kit regulate cell-matrix adhesion. Blood 83, 1033–1038 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Bruns, I. et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat. Med. 20, 1315–1320 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao, M. et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat. Med. 20, 1321–1326 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Nakamura-Ishizu, A., Takubo, K., Fujioka, M. & Suda, T. Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin. Biochem. Biophys. Res. Commun. 454, 353–357 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Nakamura-Ishizu, A., Takubo, K., Kobayashi, H., Suzuki-Inoue, K. & Suda, T. CLEC-2 in megakaryocytes is critical for maintenance of hematopoietic stem cells in the bone marrow. J. Exp. Med. 212, 2133–2146 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamazaki, S. et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147, 1146–1158 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Tikhonova, A. N. et al. The bone marrow microenvironment at single-cell resolution. Nature 569, 222–228 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baryawno, N. et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177, 1915–1932.e16 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baccin, C. et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 22, 38–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Visnjic, D. et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103, 3258–3264 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Zhu, J. et al. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood 109, 3706–3712 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Wu, J. Y. et al. Osteoblastic regulation of B lymphopoiesis is mediated by Gsα-dependent signaling pathways. Proc. Natl Acad. Sci. USA 105, 16976–16981 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zehentmeier, S. & Pereira, J. P. Cell circuits and niches controlling B cell development. Immunol. Rev. 289, 142–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fistonich, C. et al. Cell circuits between B cell progenitors and IL-7+ mesenchymal progenitor cells control B cell development. J. Exp. Med. 215, 2586–2599 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Balzano, M. et al. Nidogen-1 contributes to the interaction network involved in pro-B cell retention in the peri-sinusoidal hematopoietic stem cell niche. Cell Rep. 26, 3257–3271 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Stegner, D. et al. Thrombopoiesis is spatially regulated by the bone marrow vasculature. Nat. Commun. 8, 127 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Plo, I. et al. Genetic alterations of the thrombopoietin/MPL/JAK2 axis impacting megakaryopoiesis. Front. Endocrinol. 8, 234 (2017).

    Article  Google Scholar 

  56. Kusumbe, A. P. et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532, 380–384 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ho, Y. H. & Mendez-Ferrer, S. Microenvironmental contributions to hematopoietic stem cell aging. Haematologica 105, 38–46 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Duhrsen, U. & Hossfeld, D. K. Stromal abnormalities in neoplastic bone marrow diseases. Ann. Hematol. 73, 53–70 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Kim, Y. et al. Genetic and epigenetic alterations of bone marrow stromal cells in myelodysplastic syndrome and acute myeloid leukemia patients. Stem Cell Res. 14, 177–184 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Kim, J. A. et al. Microenvironmental remodeling as a parameter and prognostic factor of heterogeneous leukemogenesis in acute myelogenous leukemia. Cancer Res. 75, 2222–2231 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. von der Heide, E. K. et al. Molecular alterations in bone marrow mesenchymal stromal cells derived from acute myeloid leukemia patients. Leukemia 31, 1069–1078 (2017).

    Article  PubMed  CAS  Google Scholar 

  62. Blau, O. et al. Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Exp. Hematol. 35, 221–229 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Blau, O. et al. Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts. Blood 118, 5583–5592 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sala-Torra, O. et al. Evidence of donor-derived hematologic malignancies after hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 12, 511–517 (2006).

    Article  PubMed  Google Scholar 

  65. Rupec, R. A. et al. Stroma-mediated dysregulation of myelopoiesis in mice lacking IκBα. Immunity 22, 479–491 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Ghosh, S. & Karin, M. Missing pieces in the NF-κB puzzle. Cell 109, S81–S96 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Walkley, C. R. et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor γ deficiency. Cell 129, 1097–1110 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Walkley, C. R., Shea, J. M., Sims, N. A., Purton, L. E. & Orkin, S. H. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129, 1081–1095 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kim, Y. W. et al. Defective Notch activation in microenvironment leads to myeloproliferative disease. Blood 112, 4628–4638 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Zimmer, S. N. et al. Crebbp haploinsufficiency in mice alters the bone marrow microenvironment, leading to loss of stem cells and excessive myelopoiesis. Blood 118, 69–79 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Raaijmakers, M. H. et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464, 852–857 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kode, A. et al. Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature 506, 240–244 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zambetti, N. A. et al. Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia. Cell Stem Cell 19, 613–627 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Warren, A. J. Molecular basis of the human ribosomopathy Shwachman–Diamond syndrome. Adv. Biol. Regul. 67, 109–127 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Santamaria, C. et al. Impaired expression of DICER, DROSHA, SBDS and some microRNAs in mesenchymal stromal cells from myelodysplastic syndrome patients. Haematologica 97, 1218–1224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dong, L. et al. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature 539, 304–308 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Arranz, L. et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 512, 78–81 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Sacma, M. et al. Haematopoietic stem cells in perisinusoidal niches are protected from ageing. Nat. Cell Biol. 21, 1309–1320 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Maryanovich, M. et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat. Med. 24, 782–791 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Deininger, M. W. N., Tyner, J. W. & Solary, E. Turning the tide in myelodysplastic/myeloproliferative neoplasms. Nat. Rev. Cancer 17, 425–440 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Coombs, C. C. et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 21, 374–382 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kahn, J. D. et al. PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood 132, 1095–1105 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wong, T. N. et al. Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential. Nat. Commun. 9, 455 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Zink, F. et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 130, 742–752 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sano, S. et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J. Am. Coll. Cardiol. 71, 875–886 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Steensma, D. P. et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126, 9–16 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Abelson, S. et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature 559, 400–404 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shlush, L. I. et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506, 328–333 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Watson, C. J. et al. The evolutionary dynamics and fitness landscape of clonal haematopoiesis. Preprint at bioRxiv, https://doi.org/10.1101/569566 (2019).

    Article  Google Scholar 

  95. Yoshizato, T. et al. Somatic mutations and clonal hematopoiesis in aplastic anemia. N. Engl. J. Med. 373, 35–47 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Young, A. L., Challen, G. A., Birmann, B. M. & Druley, T. E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat. Commun. 7, 12484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Walter, M. J. et al. Clonal architecture of secondary acute myeloid leukemia. N. Engl. J. Med. 366, 1090–1098 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cooper, J. N. & Young, N. S. Clonality in context: hematopoietic clones in their marrow environment. Blood 130, 2363–2372 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schmitt, M. W. et al. Detection of ultra-rare mutations by next-generation sequencing. Proc. Natl Acad. Sci. USA 109, 14508–14513 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fuster, J. J. & Walsh, K. Somatic mutations and clonal hematopoiesis: unexpected potential new drivers of age-related cardiovascular disease. Circ Res 122, 523–532 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Busque, L. et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat. Genet. 44, 1179–1181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. McKerrell, T. et al. Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep. 10, 1239–1245 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Flores-Figueroa, E., Gutierrez-Espindola, G., Montesinos, J. J., Arana-Trejo, R. M. & Mayani, H. In vitro characterization of hematopoietic microenvironment cells from patients with myelodysplastic syndrome. Leukemia Res. 26, 677–686 (2002).

    Article  CAS  Google Scholar 

  104. Flores-Figueroa, E. et al. Functional analysis of myelodysplastic syndromes-derived mesenchymal stem cells. Leukemia Res. 32, 1407–1416 (2008).

    Article  CAS  Google Scholar 

  105. Medyouf, H. et al. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell 14, 824–837 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Poon, Z. et al. Bone marrow MSCs in MDS: contribution towards dysfunctional hematopoiesis and potential targets for disease response to hypomethylating therapy. Leukemia 33, 1487–1500 (2019).

    Article  PubMed  Google Scholar 

  107. Muntion, S. et al. Microvesicles from mesenchymal stromal cells are involved in HPC–microenvironment crosstalk in myelodysplastic patients. PLoS One 11, e0146722 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Rouault-Pierre, K. et al. Preclinical modeling of myelodysplastic syndromes. Leukemia 31, 2702–2708 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schepers, K. et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13, 285–299 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hawkins, E. D. et al. T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments. Nature 538, 518–522 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Kumar, B. et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia 32, 575–587 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Huan, J. et al. RNA trafficking by acute myelogenous leukemia exosomes. Cancer Res. 73, 918–929 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Paggetti, J. et al. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood 126, 1106–1117 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Szczepanski, M. J., Szajnik, M., Welsh, A., Whiteside, T. L. & Boyiadzis, M. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1. Haematologica 96, 1302–1309 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Doron, B. et al. Transmissible ER stress reconfigures the AML bone marrow compartment. Leukemia 33, 918–930 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Welner, R. S. et al. Treatment of chronic myelogenous leukemia by blocking cytokine alterations found in normal stem and progenitor cells. Cancer Cell 27, 671–681 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kleppe, M. et al. JAK–STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. Cancer Discov. 5, 316–331 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mendez-Ferrer, S., Garcia-Fernandez, M. & de Castillejo, C. L. Convert and conquer: the strategy of chronic myelogenous leukemic cells. Cancer Cell 27, 611–613 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Reynaud, D. et al. IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell 20, 661–673 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cozzolino, F. et al. Production of interleukin-1 by bone marrow myeloma cells. Blood 74, 380–387 (1989).

    Article  CAS  PubMed  Google Scholar 

  121. Gaillard, J. P. et al. Increased and highly stable levels of functional soluble interleukin-6 receptor in sera of patients with monoclonal gammopathy. Eur. J. Immunol. 23, 820–824 (1993).

    Article  CAS  PubMed  Google Scholar 

  122. Hallek, M., Bergsagel, P. L. & Anderson, K. C. Multiple myeloma: increasing evidence for a multistep transformation process. Blood 91, 3–21 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Mouhieddine, T. H., Weeks, L. D. & Ghobrial, I. M. Monoclonal gammopathy of undetermined significance. Blood 133, 2484–2494 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Pietras, E. M. et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat. Cell Biol. 18, 607–618 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Drexler, B. et al. The sympathomimetic agonist mirabegron did not lower JAK2-V617F allele burden, but restored nestin-positive cells and reduced reticulin fibrosis in patients with myeloproliferative neoplasms: results of phase II study SAKK 33/14. Haematologica 104, 710–716 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hanoun, M. et al. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell 15, 365–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang, W. et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat. Cell Biol. 14, 276–286 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Laperrousaz, B. et al. Primitive CML cell expansion relies on abnormal levels of BMPs provided by the niche and on BMPRIb overexpression. Blood 122, 3767–3777 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Oyajobi, B. O. et al. Dual effects of macrophage inflammatory protein-1α on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease. Blood 102, 311–319 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Decker, M. et al. Leptin-receptor-expressing bone marrow stromal cells are myofibroblasts in primary myelofibrosis. Nat. Cell Biol. 19, 677–688 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Schneider, R. K. et al. Gli1+ mesenchymal stromal cells are a key driver of bone marrow fibrosis and an important cellular therapeutic target. Cell Stem Cell 20, 785–800.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Verstovsek, S. et al. Role of neoplastic monocyte-derived fibrocytes in primary myelofibrosis. J. Exp. Med. 213, 1723–1740 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Maekawa, T. et al. Increased SLAMF7high monocytes in myelofibrosis patients harboring JAK2V617F provide a therapeutic target of elotuzumab. Blood 134, 814–825 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Sezer, O., Heider, U., Zavrski, I., Kuhne, C. A. & Hofbauer, L. C. RANK ligand and osteoprotegerin in myeloma bone disease. Blood 101, 2094–2098 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Bock, O. et al. Osteosclerosis in advanced chronic idiopathic myelofibrosis is associated with endothelial overexpression of osteoprotegerin. Br. J. Haematol. 130, 76–82 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Dias, S. et al. Inhibition of both paracrine and autocrine VEGF/VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc. Natl Acad. Sci. USA 98, 10857–10862 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Schmidt, T. et al. Loss or inhibition of stromal-derived PlGF prolongs survival of mice with imatinib-resistant Bcr-Abl1+ leukemia. Cancer Cell 19, 740–753 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Fiedler, W. et al. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 89, 1870–1875 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Dias, S. et al. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J. Clin. Invest. 106, 511–521 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Dias, S., Choy, M., Alitalo, K. & Rafii, S. Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy. Blood 99, 2179–2184 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Bellamy, W. T., Richter, L., Frutiger, Y. & Grogan, T. M. Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res. 59, 728–733 (1999).

    CAS  PubMed  Google Scholar 

  142. Griffin, J. D. Growth factors required for proliferation of clonogenic cells in acute myeloblastic leukemia (AML). Haematologica 72, 85–88 (1987).

    CAS  PubMed  Google Scholar 

  143. Poulos, M. G. et al. Activation of the vascular niche supports leukemic progression and resistance to chemotherapy. Exp. Hematol. 42, 976–986.e3 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hussong, J. W., Rodgers, G. M. & Shami, P. J. Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 95, 309–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Aguayo, A. et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 96, 2240–2245 (2000).

    Article  CAS  PubMed  Google Scholar 

  146. Lundberg, L. G. et al. Bone marrow in polycythemia vera, chronic myelocytic leukemia, and myelofibrosis has an increased vascularity. Am. J. Pathol. 157, 15–19 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Medinger, M. et al. Angiogenesis and vascular endothelial growth factor-/receptor expression in myeloproliferative neoplasms: correlation with clinical parameters and JAK2-V617F mutational status. Br. J. Haematol. 146, 150–157 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Pruneri, G. et al. Angiogenesis in myelodysplastic syndromes. Br. J. Cancer 81, 1398–1401 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Passaro, D. et al. Increased vascular permeability in the bone marrow microenvironment contributes to disease progression and drug response in acute myeloid leukemia. Cancer Cell 32, 324–341.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Duarte, D. et al. Inhibition of endosteal vascular niche remodeling rescues hematopoietic stem cell loss in AML. Cell Stem Cell 22, 64–77.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Velasco-Hernandez, T., Hyrenius-Wittsten, A., Rehn, M., Bryder, D. & Cammenga, J. HIF-1α can act as a tumor suppressor gene in murine acute myeloid leukemia. Blood 124, 3597–3607 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Vukovic, M. et al. Hif-1α and Hif-2α synergize to suppress AML development but are dispensable for disease maintenance. J. Exp. Med. 212, 2223–2234 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wang, Y., Liu, Y., Malek, S. N., Zheng, P. & Liu, Y. Targeting HIF1α eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 8, 399–411 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhang, H., Li, H., Xi, H. S. & Li, S. HIF1α is required for survival maintenance of chronic myeloid leukemia stem cells. Blood 119, 2595–2607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rouault-Pierre, K. et al. HIF-2α protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress. Cell Stem Cell 13, 549–563 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Lutzny, G. et al. Protein kinase c-β-dependent activation of NF-κB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo. Cancer Cell 23, 77–92 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. El-Gamal, D. et al. PKC-β as a therapeutic target in CLL: PKC inhibitor AEB071 demonstrates preclinical activity in CLL. Blood 124, 1481–1491 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Saba, N. S. & Levy, L. S. Apoptotic induction in B-cell acute lymphoblastic leukemia cell lines treated with a protein kinase Cβ inhibitor. Leuk. Lymphoma 52, 877–886 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Morschhauser, F. et al. A phase II study of enzastaurin, a protein kinase C beta inhibitor, in patients with relapsed or refractory mantle cell lymphoma. Ann. Oncol. 19, 247–253 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Park, E. et al. Stromal cell protein kinase C-β inhibition enhances chemosensitivity in B cell malignancies and overcomes drug resistance. Sci. Transl Med. 12, eaax9340 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ben-Batalla, I. et al. Axl, a prognostic and therapeutic target in acute myeloid leukemia mediates paracrine crosstalk of leukemia cells with bone marrow stroma. Blood 122, 2443–2452 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Waizenegger, J. S. et al. Role of growth arrest-specific gene 6–Mer axis in multiple myeloma. Leukemia 29, 696–704 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Lane, S. W. et al. Differential niche and Wnt requirements during acute myeloid leukemia progression. Blood 118, 2849–2856 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gregoire, M. et al. Neutrophils trigger a NF-κB dependent polarization of tumor-supportive stromal cells in germinal center B-cell lymphomas. Oncotarget 6, 16471–16487 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Sangaletti, S. et al. Defective stromal remodeling and neutrophil extracellular traps in lymphoid tissues favor the transition from autoimmunity to lymphoma. Cancer Discov. 4, 110–129 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Boutter, J. et al. Image-based RNA interference screening reveals an individual dependence of acute lymphoblastic leukemia on stromal cysteine support. Oncotarget 5, 11501–11512 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Wang, W. et al. Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer. Cell 165, 1092–1105 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Liu, J. et al. Stromal cell-mediated mitochondrial redox adaptation regulates drug resistance in childhood acute lymphoblastic leukemia. Oncotarget 6, 43048–43064 (2015).

    PubMed  PubMed Central  Google Scholar 

  170. Farge, T. et al. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov. 7, 716–735 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. German, N. J. et al. PHD3 loss in cancer enables metabolic reliance on fatty acid oxidation via deactivation of ACC2. Mol. Cell 63, 1006–1020 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Shafat, M. S. et al. Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood 129, 1320–1332 (2017).

    Article  CAS  PubMed  Google Scholar 

  173. Ye, H. et al. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell 19, 23–37 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Polak, R., de Rooij, B., Pieters, R. & den Boer, M. L. B-cell precursor acute lymphoblastic leukemia cells use tunneling nanotubes to orchestrate their microenvironment. Blood 126, 2404–2414 (2015).

    Article  CAS  PubMed  Google Scholar 

  175. Marlein, C. R. et al. NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood 130, 1649–1660 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. de Rooij, B., Polak, R., Stalpers, F., Pieters, R. & den Boer, M. L. Tunneling nanotubes facilitate autophagosome transfer in the leukemic niche. Leukemia 31, 1651–1654 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Moschoi, R. et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood 128, 253–264 (2016).

    Article  CAS  PubMed  Google Scholar 

  178. Marlein, C. R. et al. CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma. Cancer Res. 79, 2285–2297 (2019).

    Article  CAS  PubMed  Google Scholar 

  179. Poggi, A. & Giuliani, M. Mesenchymal stromal cells can regulate the immune response in the tumor microenvironment. Vaccines 4, 41 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  180. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    Article  CAS  PubMed  Google Scholar 

  181. Turley, S. J., Cremasco, V. & Astarita, J. L. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat. Rev. Immunol. 15, 669–682 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. Zocchi, M. R. et al. High ERp5/ADAM10 expression in lymph node microenvironment and impaired NKG2D ligands recognition in Hodgkin lymphomas. Blood 119, 1479–1489 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Curti, A. et al. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25 into CD25+ T regulatory cells. Blood 109, 2871–2877 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. Zafeiris, D. et al. Discovery and application of immune biomarkers for hematological malignancies. Expert Rev. Mol. Diagn. 17, 983–1000 (2017).

    Article  CAS  PubMed  Google Scholar 

  185. Tonks, A. et al. CD200 as a prognostic factor in acute myeloid leukaemia. Leukemia 21, 566–568 (2007).

    Article  CAS  PubMed  Google Scholar 

  186. Folgiero, V. et al. Indoleamine 2,3-dioxygenase 1 (IDO1) activity in leukemia blasts correlates with poor outcome in childhood acute myeloid leukemia. Oncotarget 5, 2052–2064 (2014).

    Article  PubMed  Google Scholar 

  187. Sloand, E. M., Wu, C. O., Greenberg, P., Young, N. & Barrett, J. Factors affecting response and survival in patients with myelodysplasia treated with immunosuppressive therapy. J. Clin. Oncol. 26, 2505–2511 (2008).

    Article  PubMed  Google Scholar 

  188. Orskov, A. D. et al. Hypomethylation and up-regulation of PD-1 in T cells by azacytidine in MDS/AML patients: a rationale for combined targeting of PD-1 and DNA methylation. Oncotarget 6, 9612–9626 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Ramsay, A. G. et al. Follicular lymphoma cells induce T-cell immunologic synapse dysfunction that can be repaired with lenalidomide: implications for the tumor microenvironment and immunotherapy. Blood 114, 4713–4720 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Sindel, A., Al-Juhaishi, T. & Yazbeck, V. Marginal zone lymphoma: state-of-the-art treatment. Curr. Treat. Options Oncol. 20, 90 (2019).

    Article  PubMed  Google Scholar 

  191. Ramsay, A. G., Clear, A. J., Fatah, R. & Gribben, J. G. Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood 120, 1412–1421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. McClanahan, F. et al. Mechanisms of PD-L1/PD-1-mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the Emicro-TCL1 CLL mouse model. Blood 126, 212–221 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. McClanahan, F. et al. PD-L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia. Blood 126, 203–211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Sipkins, D. A. et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435, 969–973 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Ishikawa, F. et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat. Biotechnol. 25, 1315–1321 (2007).

    Article  CAS  PubMed  Google Scholar 

  196. Krause, D. S., Lazarides, K., von Andrian, U. H. & Van Etten, R. A. Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat. Med. 12, 1175–1180 (2006).

    Article  CAS  PubMed  Google Scholar 

  197. Azab, A. K. et al. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 113, 4341–4351 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F. & Dick, J. E. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat. Med. 12, 1167–1174 (2006).

    Article  PubMed  CAS  Google Scholar 

  199. Lundell, B. I., McCarthy, J. B., Kovach, N. L. & Verfaillie, C. M. Activation of β1 integrins on CML progenitors reveals cooperation between β1 integrins and CD44 in the regulation of adhesion and proliferation. Leukemia 11, 822–829 (1997).

    Article  CAS  PubMed  Google Scholar 

  200. Jacamo, R. et al. Reciprocal leukemia-stroma VCAM-1/VLA-4-dependent activation of NF-κB mediates chemoresistance. Blood 123, 2691–2702 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Maffei, R. et al. Physical contact with endothelial cells through β1- and β2-integrins rescues chronic lymphocytic leukemia cells from spontaneous and drug-induced apoptosis and induces a peculiar gene expression profile in leukemic cells. Haematologica 97, 952–960 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Nervi, B. et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 113, 6206–6214 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Uy, G. L. et al. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood 119, 3917–3924 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Abraham, M. et al. The CXCR4 inhibitor BL-8040 induces the apoptosis of AML blasts by downregulating ERK, BCL-2, MCL-1 and cyclin-D1 via altered miR-15a/16-1 expression. Leukemia 31, 2336–2346 (2017).

    Article  CAS  PubMed  Google Scholar 

  205. Cho, B. S., Kim, H. J. & Konopleva, M. Targeting the CXCL12/CXCR4 axis in acute myeloid leukemia: from bench to bedside. Korean J. Intern. Med. 32, 248–257 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Tavor, S. et al. CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res. 64, 2817–2824 (2004).

    Article  CAS  PubMed  Google Scholar 

  207. Godavarthy, P. S. et al. The vascular bone marrow niche influences outcome in chronic myeloid leukemia via the E-selectin–SCL/TAL1–CD44 axis. Haematologica 105, 136–147 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Krause, D. S., Lazarides, K., Lewis, J. B., von Andrian, U. H. & Van Etten, R. A. Selectins and their ligands are required for homing and engraftment of BCR-ABL1+ leukemic stem cells in the bone marrow niche. Blood 123, 1361–1371 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Natoni, A. et al. E-selectin ligands recognised by HECA452 induce drug resistance in myeloma, which is overcome by the E-selectin antagonist, GMI-1271. Leukemia 31, 2642–2651 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Boyd, A. L. et al. Niche displacement of human leukemic stem cells uniquely allows their competitive replacement with healthy HSPCs. J. Exp. Med. 211, 1925–1935 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Matsunaga, T. et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat. Med. 9, 1158–1165 (2003).

    Article  CAS  PubMed  Google Scholar 

  212. Akinduro, O. et al. Proliferation dynamics of acute myeloid leukaemia and haematopoietic progenitors competing for bone marrow space. Nat. Commun. 9, 519 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Boyd, A. L. et al. Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche. Nat. Cell Biol. 19, 1336–1347 (2017).

    Article  CAS  PubMed  Google Scholar 

  214. Shiozawa, Y. et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J. Clin. Invest. 121, 1298–1312 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

    Article  CAS  PubMed  Google Scholar 

  216. Nagasawa, T. et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638 (1996).

    Article  CAS  PubMed  Google Scholar 

  217. Colmone, A. et al. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322, 1861–1865 (2008).

    Article  CAS  PubMed  Google Scholar 

  218. Oshima, T. et al. Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood 106, 3160–3165 (2005).

    Article  CAS  PubMed  Google Scholar 

  219. Klein, C. et al. Ptch2 loss drives myeloproliferation and myeloproliferative neoplasm progression. J. Exp. Med. 213, 273–290 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Pitt, L. A. et al. CXCL12-producing vascular endothelial niches control acute T cell leukemia maintenance. Cancer Cell 27, 755–768 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Passaro, D. et al. CXCR4 is required for leukemia-initiating cell activity in T cell acute lymphoblastic leukemia. Cancer Cell 27, 769–779 (2015).

    Article  CAS  PubMed  Google Scholar 

  222. Duarte, D. et al. Defining the in vivo characteristics of acute myeloid leukemia cells behavior by intravital imaging. Immunol. Cell Biol. 97, 229–235 (2019).

    Article  PubMed  Google Scholar 

  223. Rak, J. & Mendez-Ferrer, S. T-ALL: several homes rather than homeless? Immunol. Cell Biol. 95, 1–2 (2017).

    Article  CAS  PubMed  Google Scholar 

  224. Krause, D. S. et al. Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nat. Med. 19, 1513–1517 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Saito, Y. et al. Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat. Biotechnol. 28, 275–280 (2010).

    Article  CAS  PubMed  Google Scholar 

  226. Ghobrial, I. M. et al. Phase I/II trial of the CXCR4 inhibitor plerixafor in combination with bortezomib as a chemosensitization strategy in relapsed/refractory multiple myeloma. Am. J. Hematol. 94, 1244–1253 (2019).

    Article  CAS  PubMed  Google Scholar 

  227. Abraham, M. et al. Single dose of the CXCR4 antagonist BL-8040 induces rapid mobilization for the collection of human CD34+ cells in healthy volunteers. Clin. Cancer Res. 23, 6790–6801 (2017).

    Article  CAS  PubMed  Google Scholar 

  228. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02811822 (2016).

  229. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03616470 (2018).

  230. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01981850 (2013).

  231. Sánchez-Aguilera, A. et al. Estrogen signaling selectively induces apoptosis of hematopoietic progenitors and myeloid neoplasms without harming steady-state hematopoiesis. Cell Stem Cell 15, 1–14 (2014).

    Article  CAS  Google Scholar 

  232. Nakada, D. et al. Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy. Nature 505, 555–558 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Sanchez-Aguilera, A. & Mendez-Ferrer, S. Regulation of hematopoietic progenitors by estrogens as a basis for new antileukemic strategies. Mol. Cell Oncol. 3, e1009728 (2016).

    Article  PubMed  CAS  Google Scholar 

  234. EU Clinical Trials Register. https://www.clinicaltrialsregister.eu/ctr-search/search?query=2015-005497-38 (2016).

  235. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03572634 (2019).

  236. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02488408 (2014).

  237. Kondo, K. et al. Ibrutinib modulates the immunosuppressive CLL microenvironment through STAT3-mediated suppression of regulatory B-cell function and inhibition of the PD-1/PD-L1 pathway. Leukemia 32, 960–970 (2018).

    Article  CAS  PubMed  Google Scholar 

  238. Nimmagadda, S. C. et al. SDF1α-induced chemotaxis of JAK2-V617F-positive cells is dependent on Bruton tyrosine kinase and its downstream targets PI3K/AKT, PLCγ1 and RhoA. Haematologica 104, e288–e292 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Zaitseva, L. et al. Ibrutinib inhibits SDF1/CXCR4 mediated migration in AML. Oncotarget 5, 9930–9938 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Bam, R. et al. Role of Bruton’s tyrosine kinase in myeloma cell migration and induction of bone disease. Am. J. Hematol. 88, 463–471 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Ponader, S. et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 119, 1182–1189 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Javidi-Sharifi, N. et al. FGF2–FGFR1 signaling regulates release of leukemia-protective exosomes from bone marrow stromal cells. eLife 8, e40033 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Baran, N. & Konopleva, M. Molecular pathways: hypoxia-activated prodrugs in cancer therapy. Clin. Cancer Res. 23, 2382–2390 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Mendez-Ferrer, S., Scadden, D. T. & Sanchez-Aguilera, A. Bone marrow stem cells: current and emerging concepts. Ann. N. Y. Acad. Sci. 1335, 32–44 (2015).

    Article  CAS  PubMed  Google Scholar 

  245. Isern, J. et al. Self-renewing human bone marrow mesenspheres promote hematopoietic stem cell expansion. Cell Rep. 3, 1714–1724 (2013).

    Article  CAS  PubMed  Google Scholar 

  246. Ghazanfari, R., Li, H., Zacharaki, D., Lim, H. C. & Scheding, S. Human non-hematopoietic CD271pos/CD140alow/neg bone marrow stroma cells fulfill stringent stem cell criteria in serial transplantations. Stem Cell Dev. 25, 1652–1658 (2016).

    Article  CAS  Google Scholar 

  247. Lo Celso, C. et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457, 92–96 (2009).

    Article  CAS  PubMed  Google Scholar 

  248. Abarrategi, A. et al. Modeling the human bone marrow niche in mice: from host bone marrow engraftment to bioengineering approaches. J. Exp. Med. 215, 729–743 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Coutu, D. L., Kokkaliaris, K. D., Kunz, L. & Schroeder, T. Multicolor quantitative confocal imaging cytometry. Nat. Methods 15, 39–46 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. García-Fernández for helping to structure and critically edit the manuscript. Original work by the authors discussed in this article was supported by core support grants from the Wellcome Trust and the Medical Research Council (MRC) to the Cambridge Stem Cell Institute, National Health Service Blood and Transplant (UK), European Union’s Horizon 2020 research (ERC-2014-CoG-64765) and a Programme Foundation Award from Cancer Research UK to S.M.-F., and from the LOEWE Center for Cell and Gene Therapy Frankfurt (CGT; funded by HMWK reference number III L 4-518/17.004; 2010) and Georg-Speyer-Haus (funded jointly by the German Federal Ministry of Health (BMG) and the Ministry of Higher Education, Research and the Arts of the State of Hessen, HMWK) to D.S.K. The authors acknowledge the support of the European School of Haematology (ESH) and apologize for the omission of relevant literature due to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

S.M.-F. researched the data, prepared the figures and designed and wrote the article. D.S.K. wrote a significant part of the manuscript. D.P.S. and R.P.H. contributed equally to writing sections and editing the article. D.B., I.M.G., J.G.G. and M.A. provided a substantial contribution to discussions of the content.

Corresponding author

Correspondence to Simón Méndez-Ferrer.

Ethics declarations

Competing interests

The authors declare no relevant conflicts of interest.

Additional information

Peer review information

Nature Reviews Cancer thanks E. Hawkins and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez-Ferrer, S., Bonnet, D., Steensma, D.P. et al. Bone marrow niches in haematological malignancies. Nat Rev Cancer 20, 285–298 (2020). https://doi.org/10.1038/s41568-020-0245-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-020-0245-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer