Skip to main content
Log in

Guaranteed cost nonlinear sampled-data control: applications to a class of chaotic systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses the guaranteed cost sampled-data controller synthesis and analysis problems with application to nonlinear chaotic systems. A linear parameter-varying (LPV) model is utilized to represent the nonlinear behaviour of the chaotic system while the gap between the measured and real parameters of the controller and plant are considered as bounded uncertainties. Using the LPV model coupled with the uncertainties, a modified parameter-dependent Lyapunov functional method is utilized and a sampled-data controller is developed that locally asymptotically stabilizes the nonlinear system with guaranteed predefined cost function upper bound. Moreover, employing the cost function upper bound minimization, a suboptimal sampled-data LPV controller is proposed. The central contribution of this work is to present a novel LMI-based formulation with the less conservative results, and thereby, an LMI-based LPV suboptimal sampled-data controller synthesis procedure is developed for nonlinear chaotic systems. The proposed procedure is readily solved by the aid of available off-the-shelf convex optimization techniques. Finally, the proposed sampled-data LPV controller is applied to the well-known chaotic Lorenz and Rossler systems, and the results verify the effectiveness and less conservativeness of the proposed method compared to some state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ablay, G.: Sliding mode control of uncertain unified chaotic systems. Nonlinear Anal. Hybrid Syst. 3(4), 531–535 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Agulhari, C.M., De Oliveira, R., Peres, P.L.: Robust LMI parser: a computational package to construct LMI conditions for uncertain systems. In: XIX Brazilian Conference on Automation (CBA 2012), pp. 2298–2305 (2012)

  3. Bahmani, H., Bayat, F., Golchin, M.: Wind turbines power regulation using a low-complexity linear parameter varying-model predictive control approach. Trans. Inst. Meas. Control 42(1), 81–93 (2020)

    Google Scholar 

  4. Bayat, F., Bahmani, H.: Power regulation and control of wind turbines: LMI-based output feedback approach. Int. Trans. Electr. Energy Syst. 27(12), e2450 (2017)

    Google Scholar 

  5. Bayat, F., Karimi, M., Taheri, A.: Robust output regulation of zeta converter with load/input variations: LMI approach. Control Eng. Pract. 84, 102–111 (2019)

    Google Scholar 

  6. Boeing, G.: Visual analysis of nonlinear dynamical systems: chaos, fractals, self-similarity and the limits of prediction. Systems 4(4), 37 (2016)

    Google Scholar 

  7. Briat, C.: Convergence and equivalence results for the Jensen’s inequality application to time-delay and sampled-data systems. IEEE Trans. Autom. Control 56(7), 1660–1665 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Briat, C.: Linear parameter-varying and time-delay systems. In: Analysis, Observation, Filtering and Control, Advances in Delays and Dynamics, vol. 3. Springer, Berlin, Heidelberg, pp. 1–394 (2014)

  9. Chang, K.M.: Adaptive control for a class of chaotic systems with nonlinear inputs and disturbances. Chaos Solitons Fractals 36(2), 460–468 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Chen, D., Sun, J., Wu, Q.: Impulsive control and its application to Lü’s chaotic system. Chaos Solitons Fractals 21(5), 1135–1142 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Chen, M., Zhou, D., Shang, Y.: Nonlinear feedback control of Lorenz system. Chaos Solitons Fractals 21(2), 295–304 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Fridman, E.: A refined input delay approach to sampled-data control. Automatica 46(2), 421–427 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Gaspar, P., Szabo, Z., Bokor, J., Nemeth, B.: Modeling of LPV systems. In: Grimble, M.J., Johnson, M.A. (eds.) Robust Control Design for Active Driver Assistance Systems, pp. 11–70. Springer, Berlin (2017)

    MATH  Google Scholar 

  14. Ge, C., Li, Z., Huang, X., Shi, C.: New globally asymptotical synchronization of chaotic systems under sampled-data controller. Nonlinear Dyn. 78(4), 2409–2419 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Ge, C., Wang, B., Park, J.H., Hua, C.: Improved synchronization criteria of Lur’e systems under sampled-data control. Nonlinear Dyn. 94(4), 2827–2839 (2018)

    MATH  Google Scholar 

  16. Ghamati, M., Balochian, S.: Design of adaptive sliding mode control for synchronization Genesio–Tesi chaotic system. Chaos Solitons Fractals 75, 111–117 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Grebogi, C., Ott, E., Yorke, J.A.: Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics. Science 238(4827), 632–638 (1987)

    MathSciNet  MATH  Google Scholar 

  18. Hoffmann, C., Werner, H.: A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations. IEEE Trans. Control Syst. Technol. 23(2), 416–433 (2015)

    Google Scholar 

  19. Hooshmandi, K., Bayat, F., Jahed-Motlagh, M., Jalali, A.: Stability analysis and design of nonlinear sampled-data systems under aperiodic samplings. Int. J. Robust Nonlinear Control 28(7), 2679–2699 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Hooshmandi, K., Bayat, F., Jahed-Motlagh, M.R., Jalali, A.: Robust sampled-data control of non-linear LPV systems: time-dependent functional approach. IET Control Theory Appl. 12(9), 1318–1331 (2018)

    MathSciNet  Google Scholar 

  21. Hooshmandi, K., Bayat, F., Jahed-Motlagh, M.R., Jalali, A.A.: Polynomial LPV approach to robust \(H_\infty \) control of nonlinear sampled-data systems. Int. J. Control (2018). https://doi.org/10.1080/00207179.2018.1547422

    Article  MATH  Google Scholar 

  22. Hu, C., Jiang, H., Teng, Z.: General impulsive control of chaotic systems based on a ts fuzzy model. Fuzzy Sets Syst. 174(1), 66–82 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Jia, J., Chen, W., Dai, H., Li, J.: Global stabilization of high-order nonlinear systems under multi-rate sampled-data control. Nonlinear Dyn. 94(4), 2441–2453 (2018)

    MATH  Google Scholar 

  24. Kocvara, M., Stingl, M., GbR, P.: Penbmi user’s guide (version 2.1). software manual, PENOPT GbR, Hauptstrasse A 31, 91,338 (2005)

  25. Koo, J., Lee, S., Ji, D., Park, J.H., Won, S.: Guaranteed cost LPV controller design for a class of chaos synchronization. In: American Control Conference (ACC), 2011, pp. 5097—5102. IEEE (2011)

  26. Lam, H., Leung, F.F.: Stabilization of chaotic systems using linear sampled-data controller. Int. J. Bifurc. Chaos 17(06), 2021–2031 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Lee, T.H., Park, J.H.: New methods of fuzzy sampled-data control for stabilization of chaotic systems. IEEE Trans. Syst. Man Cybern. Syst. 48(12), 2026–2034 (2017)

    Google Scholar 

  28. Li, S., Ahn, C.K., Guo, J., Xiang, Z.: Global output feedback sampled-data stabilization of a class of switched nonlinear systems in the p-normal form. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2894978

    Article  Google Scholar 

  29. Liu, K., Fridman, E.: Wirtinger’s inequality and Lyapunov-based sampled-data stabilization. Automatica 48(1), 102–108 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Liu, Y., Lee, S.: Synchronization of chaotic Lur’e systems using sampled-data PD control. Nonlinear Dyn. 85(2), 981–992 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Lofberg, J.: Yalmip: a toolbox for modeling and optimization in matlab. In: 2004 IEEE International Symposium on Computer Aided Control Systems Design, pp. 284–289. IEEE (2004)

  32. Lü, J., Chen, G., Cheng, D., Celikovsky, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurc. Chaos 12(12), 2917–2926 (2002)

    MathSciNet  MATH  Google Scholar 

  33. Mohammadkhani, M., Bayat, F., Jalali, A.: Constrained linear parameter-varying control using approximate multiparametric programming. Optimal Control Appl. Methods 39(5), 1670–1683 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Mosek, A.: The mosek optimization software. http://www.mosek.com54(2–1), 5 (2010)

  35. Oliveira, R.C., Peres, P.L.: Parameter-dependent LMIs in robust analysis: characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxations. IEEE Trans. Autom. Control 52(7), 1334–1340 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Seuret, A.: A novel stability analysis of linear systems under asynchronous samplings. Automatica 48(1), 177–182 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Seuret, A., Briat, C.: Stability analysis of uncertain sampled-data systems with incremental delay using looped-functionals. Automatica 55, 274–278 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Shi, Y., Cao, J., Chen, G.: Exponential stability of complex-valued memristor-based neural networks with time-varying delays. Appl. Math. Comput. 313, 222–234 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Tanaka, K., Ikeda, T., Wang, H.O.: A unified approach to controlling chaos via an LMI-based fuzzy control system design. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 45(10), 1021–1040 (1998)

    MathSciNet  MATH  Google Scholar 

  40. Tuan, H.D., Apkarian, P., Nguyen, T.Q.: Robust and reduced-order filtering: new LMI-based characterizations and methods. IEEE Trans. Signal Process. 49(12), 2975–2984 (2001)

    Google Scholar 

  41. Wang, X., Park, J.H., Yang, H., Zhang, X., Zhong, S.: Delay-dependent fuzzy sampled-data synchronization of TS fuzzy complex networks with multiple couplings. IEEE Trans. Fuzzy Syst. 28(1), 178–189 (2019)

    Google Scholar 

  42. Wang, X., Park, J.H., Zhong, S., Yang, H.: A switched operation approach to sampled-data control stabilization of fuzzy memristive neural networks with time-varying delay. IEEE Transactions Neural Netw. Learn. Syst. (2019). https://doi.org/10.1109/TNNLS.2019.2910574

    Article  Google Scholar 

  43. Wang, Y., Xia, Y., Zhou, P.: Fuzzy-model-based sampled-data control of chaotic systems: a fuzzy time-dependent Lyapunov–Krasovskii functional approach. IEEE Trans. Fuzzy Syst. 25(6), 1672–1684 (2016)

    Google Scholar 

  44. Wang, Z.P., Wu, H.N.: On fuzzy sampled-data control of chaotic systems via a time-dependent Lyapunov functional approach. IEEE Trans. Cybern. 45(4), 819–829 (2015)

    Google Scholar 

  45. Wang, Z.P., Wu, H.N.: Robust guaranteed cost sampled-data fuzzy control for uncertain nonlinear time-delay systems. IEEE Trans. Syst. Man Cybern. Syst. 49(5), 964–975 (2017)

    Google Scholar 

  46. Wu, H.N., Li, M.M., Guo, L.: Finite-horizon approximate optimal guaranteed cost control of uncertain nonlinear systems with application to mars entry guidance. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1456–1467 (2015)

    MathSciNet  Google Scholar 

  47. Wu, Z.G., Shi, P., Su, H., Chu, J.: Sampled-data fuzzy control of chaotic systems based on a T–S fuzzy model. IEEE Trans. Fuzzy Syst. 22(1), 153–163 (2014)

    Google Scholar 

  48. Yang, D., Zhao, J.: Dissipativity for switched LPV systems and its application: a parameter and dwell time-dependent multiple storage functions method. IEEE Trans. Syst. Man Cybern. Syst. 50(2), 502–513 (2020)

    Google Scholar 

  49. Yang, G.H., Wang, J.L., Soh, Y.C.: Reliable guaranteed cost control for uncertain nonlinear systems. IEEE Trans. Autom. Control 45(11), 2188–2192 (2000)

    MathSciNet  MATH  Google Scholar 

  50. Yu, Y., Yuan, Y., Yang, H., Liu, H.: Nonlinear sampled-data ESO-based active disturbance rejection control for networked control systems with actuator saturation. Nonlinear Dyn. 95(2), 1415–1434 (2019)

    Google Scholar 

  51. Zeng, H.B., Park, J.H., Xiao, S.P., Liu, Y.: Further results on sampled-data control for master–slave synchronization of chaotic Lur’e systems with time delay. Nonlinear Dyn. 82(1–2), 851–863 (2015)

    MathSciNet  MATH  Google Scholar 

  52. Zhang, B.L., Meng, M.M., Han, Q.L., Zhang, X.M.: Robust non-fragile sampled-data control for offshore steel jacket platforms. Nonlinear Dyn. 83(4), 1939–1954 (2016)

    MathSciNet  MATH  Google Scholar 

  53. Zhang, H., Wang, Y., Liu, D.: Delay-dependent guaranteed cost control for uncertain stochastic fuzzy systems with multiple time delays. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 38(1), 126–140 (2008)

    Google Scholar 

  54. Zhang, R., Zeng, D., Park, J.H., Liu, Y., Zhang, S.: Pinning event-triggered sampling control for synchronization of TS fuzzy complex networks with partial and discrete-time couplings. IEEE Trans. Fuzzy Syst. 27(12), 2368–2380 (2019)

    Google Scholar 

  55. Zhang, R., Zeng, D., Park, J.H., Liu, Y., Zhong, S.: Quantized sampled-data control for synchronization of inertial neural networks with heterogeneous time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 29(12), 6385–6395 (2018)

    MathSciNet  Google Scholar 

  56. Zhang, R., Zeng, D., Zhong, S., Shi, K., Cui, J.: New approach on designing stochastic sampled-data controller for exponential synchronization of chaotic Lur’e systems. Nonlinear Anal. Hybrid Syst. 29, 303–321 (2018)

    MathSciNet  MATH  Google Scholar 

  57. Zhou, K., Khargonekar, P.P.: Robust stabilization of linear systems with norm-bounded time-varying uncertainty. Syst. Control Lett. 10(1), 17–20 (1988)

    MathSciNet  MATH  Google Scholar 

  58. Zhu, X.L., Chen, B., Yue, D., Wang, Y.: An improved input delay approach to stabilization of fuzzy systems under variable sampling. IEEE Trans. Fuzzy Syst. 20(2), 330–341 (2012)

    Google Scholar 

  59. Zhu, Y., He, H., Zhao, D.: LMI-based synthesis of string-stable controller for cooperative adaptive cruise control. IEEE Trans. Intell. Transp. Syst. (2019). https://doi.org/10.1109/TITS.2019.2935510

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Bayat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hooshmandi, K., Bayat, F., Jahedmotlagh, M. et al. Guaranteed cost nonlinear sampled-data control: applications to a class of chaotic systems. Nonlinear Dyn 100, 731–748 (2020). https://doi.org/10.1007/s11071-020-05540-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05540-7

Keywords

Navigation