Skip to main content
Log in

A low-power low-noise multi-stage transimpedance amplifier for amperometric based blood glucose monitoring systems

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, the design of low-noise, low-power transimpedance amplifier (TIA) is presented for a miniaturized amperometric based continuous blood glucose monitoring system for wearable devices. The proposed multi-stage cascode common source transimpedance amplifier circuit is designed and implemented in a 180 nm CMOS technology. It has been demonstrated that the proposed TIA shows a significant increase in transimpedance gain, 1.72 GΩ with a bandwidth of 180 kHz and input referred current noise is 18 fA/√Hz for an input current of 200 pA. The total power consumption is 52 μW with a 1.4 V supply and occupies a chip area of 110 μm × 140 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. International technology roadmap for semiconductors. (2012), http://www.itrs.net/Links/2012ITRS/Home2012.html.

  2. Chen, A., Hutchby, J., Bourianoff, G., & Zhirnov, V. (2015). Emerging nanoelectronic devices (pp. 6–450). Hoboken: Wiley.

    Google Scholar 

  3. Heller, A., & Feldman, B. (2008). Electrochemical glucose sensors and their applications in diabetes management. Chemical Reviews,108(7), 2482–2505.

    Article  Google Scholar 

  4. Lei, Z., Yu, Z., & He, X. (2007). Design and verification of ultra low current mode amplifier aiming at biosensor applications. In IEEE Conference on Electronics, Circuits and Systems, Marrakech Morocco (pp. 1304–1307).

  5. Liu, Y., Huang, B., & Yao, Y. (2012). Micromachined biosensor system for interstitial fluid sampling and glucose monitoring. In IEEE Conference on Mechatronics and Automation, Chengdu, China (pp. 647–652).

  6. Yang, C., Huang, Y., Hassler, B. L., Worden, R. M., & Mason, A. J. (2009). Amperometric electrochemical microsystem for a miniaturized protein biosensor array. IEEE Transactions on Biomedical Circuits and Systems,3(3), 160–168.

    Article  Google Scholar 

  7. Puttananjegowda, K., Takshi, A., & Thomas, S. (2020). Electrospun Nanofibrous Structures for Electrochemical Enzymatic Glucose Biosensing: A Perspective. Journal of Electrochemical Society, 163(3), 1–7.

    Article  Google Scholar 

  8. Girardin, C. M., Huot, C., & Gonthier, M. (2009). Continuous glucose monitoring: A review of biochemical perspectives and clinical use in type-1 diabetes. Journal of Clinical Biochemistry,42, 4136–4142.

    Article  Google Scholar 

  9. Puttananjegowda, K., Takshi, A., & Thomas, S. (2020). An Electrospun Nanofibrous Membrane based Electrochemical Glucose Sensor. IEEE Sensors Letters,4(2), 1–4.

  10. Karandikar, N., Jung, S., Sun, Y., & Hoon, J. C. (2016). Low power, low noise, compact amperometric circuit for three terminal glucose biosensor. Analog Integrated Circuits and Signal Processing,89, 417–424.

    Article  Google Scholar 

  11. Dalvi, N. (2013). Glucose meter reference design. AN1560, Microchip Technology Inc.

  12. Razavi, B. (2016). Design of analog CMOS integrated circuits (2nd ed.). New York: McGraw-Hill Education.

    Google Scholar 

  13. Khandaker, A. M., Islam, S. K., Hensley, D. K., & Nicole, M. (2016). A glucose biosensor using CMOS potentiostat and vertically aligned carbon nanofibers. IEEE Transactions on Biomedical Circuits and Systems,10(4), 807–816.

    Article  Google Scholar 

  14. Viswanathan, B., Pierre, R., Yuksel, T., Anna, F., & Enz, C. C. (2013). A 0.18 um biosensor front-end based on 1/f noise, distortion cancelation and chopper stabilization techniques. IEEE Transactions on Biomedical Circuits and Systems,7(5), 660–673.

    Article  Google Scholar 

  15. Puttananjegowda, K., & Thomas, S. (2018). A CNTFET based Multi-Stage Transimpedance Amplifier for Blood Glucose Monitoring Systems. In IEEE Information Technology, Electronics and Mobile Communication Conference, Vancouver, Canada (pp. 383–388).

  16. Jiaping, H., Yong-Bin, K., & Ayers, J. (2010). A low-power 100 MΩ CMOS front-end transimpedance amplifier for biosensing applications. In IEEE midwest symposium circuits and systems, Seattle, WA, USA (pp. 541–544).

  17. Kim, D., Goldstein, B., Tang, W., Sigworth, F. J., & Culurciello, E. (2013). Noise analysis and performance comparison of low current measurement systems for biomedical applications. IEEE Transactions on Biomedical Circuits and Systems,7, 52–62.

    Article  Google Scholar 

  18. Crescentini, M., Bennati, M., Carminati, M., & Tartagni, M. (2014). Noise limits of CMOS current interfaces for biosensors: A review. IEEE Transactions on Biomedical Circuits and Systems,8, 278–292.

    Article  Google Scholar 

  19. Mark, M. R. I., & Peter, M. L. (2014). CMOS transimpedance amplifier for biosensor signal acquisition. In IEEE international symposium on circuits and systems, Melbourne VIC, Australia (pp. 25–28).

  20. Jongpal, K., & Ko, H. (2016). Reconfigurable multiparameter biosignal acquisition SoC for low power wearable platform. Sensors Journal,2002(16), 1–13.

    Google Scholar 

  21. Jongpal, K., Jihoon, K., & Hyoungho, K. (2016). Low-power photoplethysmogram acquisition integrated circuit with robust light interference compensation. Sensors Journal,16(46), 1–11.

    Google Scholar 

  22. Baker, J. (2010). CMOS circuit design, layout and simulation (3rd ed.). New York: Wiley.

    Book  Google Scholar 

  23. Sedra, A. S., & Smith, K. C. (2004). Microelectronic circuits. New York: Oxford D University Press.

    Google Scholar 

  24. Sansen, W. M. C. (2006). Analog design essentials. Dordrecht: Springer.

    Google Scholar 

  25. Gray, P. R. (2009). Analysis and design of analog integrated circuits. New York: Wiley.

    Google Scholar 

  26. Allen, P. E., & Holberg, D. R. (2002). CMOS analog circuit design. Oxford: Oxford University Press.

    Google Scholar 

  27. Shenoy, V., Jung, S., Yoon, Y., Park, Y., Kim, Y., & Chung, H. J. (2014). A CMOS analog correlator-based painless nonenzymatic glucose sensor readout circuit. IEEE Sensors Journal,14(5), 1591–1599.

    Article  Google Scholar 

  28. Sara, K. G., Irene, T., Giovanni, D. M., Sandro, C., & Pantelis, G. (2017). A differential electrochemical readout ASIC with heterogeneous integration of bio-nano sensors for amperometric sensing. IEEE Transactions on Biomedical Circuits and Systems,11(5), 1148–1159.

    Article  Google Scholar 

  29. Sung, Y. S., Chen, W. M., & Wu, C. Y. (2016). The design of 8-channel CMOS area-efficient low-power current-mode analog front-end amplifier for EEG signal recording. In IEEE international symposium on circuits and systems, Montreal, QC, Canada (pp. 530–533).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavyashree Puttananjegowda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puttananjegowda, K., Thomas, S. A low-power low-noise multi-stage transimpedance amplifier for amperometric based blood glucose monitoring systems. Analog Integr Circ Sig Process 102, 659–666 (2020). https://doi.org/10.1007/s10470-020-01600-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01600-5

Keywords

Navigation