Skip to main content
Log in

Preparation of hybrid membranes by incorporating hydrophilic UiO-66 nanoparticles for high-performance pervaporation dehydration of aprotic solvents

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Hydrophilic UiO-66 crystals with superior water adsorption ability were synthesized and incorporated into the polyimide (PI) membrane for efficient aprotic solvent separation via pervaporation. The effect of the different UiO-66 addition in the pyromellitic dianhydride (PMDA)-2, 2-bis[4-(4-amlnophenoxy)phenyl]propane (BAPP)-based PI membrane on the membrane structure, thermal stability, surface hydrophilicity, solvent-resistant, and pervaporation performance was systematically studied. The UiO-66/PI hybrid membranes with small amount content (2 wt%) exhibited high hydrophilicity and excellent swelling resistance due to the superb dispersion benefiting from the excellent complexation of UiO-66 and PI chain. The effects of operational variables such as operating temperature and concentration of feed solution on the pervaporation separation performance of the hybrid membranes with different UiO-66 loadings were investigated. When the mass fraction of UiO-66 was 2 wt%, the hybrid membranes show the permeation flux of 109.7 and 57.1 g/(m2h) and separation factor of 34.1 and 133.9, respectively, for DMF/H2O and DMAc/H2O systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

BAPP:

2,2-Bis[4-(4-amlnophenoxy)phenyl]propane

DMAc:

N,N-dimethylacetamide

DMF:

N,N-dimethylformamide

FTIR:

Fourier-transform infrared

PAA:

Poly(amic acid)

PI:

Polyimide

PMDA:

Pyromellitic dianhydride

PV:

Pervaporation

SD :

Swelling degree

TGA:

Thermogravimetric analysis

XRD:

X-ray diffraction

A p :

Pre-exponential factor

R :

Gas constant

M s :

Weights of swollen membranes (g)

M d :

Weights of dry membranes (g)

J :

Permeation flux (g m−2 h−1)

E P :

Apparent activation energy (kJ/mol)

T :

Feed temperature (K)

References

  • Cao KT, Jiang ZY, Zhao J, Zhao CH, Gao CY, Pan FS, Wang BY, Cao XZ, Yang J (2014) Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides. J Membr Sci 469:272–283

    Article  CAS  Google Scholar 

  • Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851

    Article  Google Scholar 

  • Chapman PD, Oliveira T, Livingston AG, Li K (2008) Membranes for the dehydration of solvents by pervaporation. J Membr Sci 318:5–37

    Article  CAS  Google Scholar 

  • Chen CF, Huang XG, Qin WM (2007) Preparation, characterization and thermal decomposition of polyimides with main chain containing cycloaliphatic units. J Macromol Sci B 47:109–116

    Article  Google Scholar 

  • Das S, Banthia AK, Adhikari B (2006) Pervaporation separation of DMF from water using a crosslinked polyurethane urea-PMMA IPN membrane. Desalination 197:106–116

    Article  CAS  Google Scholar 

  • Devi DA, Smitha B, Sridhar S, Aminabhavi TM (2006) Pervaporation separation of dimethylformamide/water mixtures through poly(vinyl alcohol)/poly(acrylic acid) blend membranes. Sep Purif Technol 51:104–111

    Article  CAS  Google Scholar 

  • Elshof JE, Abadal CR, Sekulić J, Chowdhury SR, Blank DHA (2003) Transport mechanisms of water and organic solvents through microporous silica in the pervaporation of binary liquids. Microporous Mesoporous Mater 65:197–203

    Article  Google Scholar 

  • Flynn EJ, Keane DA, Tabari PM, Morris MA (2013) Pervaporation performance enhancement through the incorporation of mesoporous silica spheres into PVA membranes. Sep Purif Technol 118:73–80

    Article  CAS  Google Scholar 

  • Grimaldi J, Imbrogno J, Kilduff JC, Belfort G (2015) New class of synthetic membranes: organophilic pervaporation brushes for organics recovery. Chem Mater 27:4142–4148

    Article  CAS  Google Scholar 

  • Huang Y, Baker RW, Vane LM (2010) Low-energy distillation-membrane separation process. Ind Eng Chem Res 49:3760–3768

    Article  CAS  Google Scholar 

  • James SL (2003) Metal-organic frameworks. Chem Soc Rev 32:276–288

    Article  CAS  Google Scholar 

  • Katz MJ, Brown ZJ, Colón YJ, Siu PW, Scheidt K, Snurr RQ, Hupp JT, Farha OK (2013) A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem Commun 49:9449–9451

    Article  CAS  Google Scholar 

  • Khosravi T, Mosleh S, Bakhtiari O, Mohammadi T (2012) Mixed matrix membranes of Matrimid 5218 loaded with zeolite 4A for pervaporation separation of water-isopropanol mixtures. Chem Eng Res Des 90:2353–2363

    Article  CAS  Google Scholar 

  • Kurkuri MD, Aminabhavi TM (2004) Polyacrylonitrile-g-poly(vinyl alcohol) membranes for the pervaporation separation of dimethylformamide and water mixtures. J Appl Polym Sci 91:4091–4097

    Article  CAS  Google Scholar 

  • Li YF, He GW, Wang SF, Yu SN, Pan FS, Wu H, Jiang ZY (2013) Recent advances in the fabrication of advanced composite membranes. J Mater Chem A 1:10058–10077

    Article  CAS  Google Scholar 

  • Li QQ, Liu Q, Zhao J, Hua YY, Sun JJ, Duan JG, Jin WQ (2017) High efficient water/ethanol separation by a mixed matrix membrane incorporating MOF filler with high water adsorption capacity. J Membr Sci 544:68–78

    Article  CAS  Google Scholar 

  • Ma WZ, Li TY, Jiang C, Zhang P, Deng L, Xu R, Zhang Q, Zhong J, Matsuyama H (2019) Effect of chain structure on the solvent resistance in aprotic solvents and pervaporation performance of PMDA and BTDA based polyimide membranes. J Membr Sci 584:216–226

    Article  CAS  Google Scholar 

  • Morigami Y, Kondo M, Abe J, Kita H, Okamoto K (2001) The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane. Sep Purif Technol 25:251–260

    Article  CAS  Google Scholar 

  • Nik OG, Chen XY, Kaliaguine S (2012) Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. J Membr Sci 413−414:48–61

    Article  Google Scholar 

  • Othman MBH, Ramli R, Ariff ZM, Akil HM, Ahmad Z (2012) Thermal properties of polyimide system containing silicone segments. J Therm Anal Calorim 109:1515–1523

    Article  CAS  Google Scholar 

  • Shah D, Kissick K, Ghorpade A, Hannah R, Bhattacharyya D (2000) Pervaporation of alcohol–water and dimethylformamide-water mixtures using hydrophilic zeolite NaA membranes: mechanisms and experimental results. J Membr Sci 179:185–205

    Article  CAS  Google Scholar 

  • Shen J, Liu GP, Kang H, Li QQ, Guan KC, Li YK, Jin WQ (2016) UiO-66-polyether block amide mixed matrix membranes for CO2 separation. J Membr Sci 513:155–165

    Article  CAS  Google Scholar 

  • Shi GM, Yang TX, Chung TS (2012) Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols. J Membr Sci 415-416:577–586

    Article  CAS  Google Scholar 

  • Solaka EK, Asmanb G, Camurluc P, Sanlı O (2008) Sorption, diffusion, and pervaporation characteristics of dimethylformamide/water mixtures using sodium alginate/polyvinyl pyrrolidone blend membranes. Vacuum 82:579–587

    Article  Google Scholar 

  • Sorribas S, Kudasheva A, Almendro E, Zornoza B, IglesiaÓ TC, Coronas J (2015) Pervaporation and membrane reactor performance of polyimide based mixed matrix membranes containing MOF HKUST-1. Chem Eng Sci 124:37–44

    Article  CAS  Google Scholar 

  • Su NC, Sun DT, Beavers CM, Britt DK, Queen WL, Urban JJ (2016) Enhanced permeation arising from dual transport pathways in hybrid polymer-MOF membranes. Energy Environ Sci 9:922–931

    Article  CAS  Google Scholar 

  • Tang J, Sirkar KK (2012) Perfluoropolymer membrane behaves like a zeolite membrane in dehydration of aprotic solvents. J Membr Sci 421-422:211–216

    Article  CAS  Google Scholar 

  • Tran NT, Kim J, Othman MR (2019) Microporous ZIF-8 membrane prepared from secondary growth for improved propylene permeance and selectivity. Microporous Mesoporous Mater 285:178–184

    Article  CAS  Google Scholar 

  • Valenzano L, Civalleri B, Chavan S, Bordiga S, Nilsen MH, Jakobsen S, Lillerud KP, Lamberti C (2011) Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem Mater 23:1700–1718

    Article  CAS  Google Scholar 

  • Venna SR, Lartey M, Li T, Spore A, Kumar S, Nulwala HB, Luebke DR, Rosi NL, Albenze E (2015) Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. J Mater Chem A 3:5014–5022

    Article  CAS  Google Scholar 

  • Wang T, Shen JN, Wu LG, Bruggen BV (2014) Improvement in the permeation performance of hybrid membranes by the incorporation of functional multi-walled carbon nanotubes. J Membr Sci 466:338–347

    Article  CAS  Google Scholar 

  • Wang NX, Zhang GJ, Wang L, Li J, An QF, Ji SL (2017) Pervaporation dehydration of acetic acid using NH2-UiO-66/PEI mixed matrix membranes. Sep Purif Technol 186:20–27

    Article  CAS  Google Scholar 

  • Wu GR, Jiang MC, Zhang TT, Jia ZQ (2016) Tunable pervaporation performance of modified MIL-53(Al)-NH2/poly(vinyl alcohol) mixed matrix membranes. J Membr Sci 507:72–80

    Article  CAS  Google Scholar 

  • Xie W, Pan WP (2001) Thermal characterization of materials using evolved gas analysis. J Therm Anal Calorim 65:669–685

    Article  CAS  Google Scholar 

  • Xu YM, Chung TS (2017) High-performance UiO-66/polyimide mixed matrix membranes for ethanol, isopropanol and n-butanol dehydration via pervaporation. J Membr Sci 531:16–26

    Article  CAS  Google Scholar 

  • Xu R, Guo M, Wang J, Zhang Q, Zhong J (2016) Fabrication of solvent-resistant copolyimide membranes for pervaporation recovery of amide solvents. Chem Eng Technol 41:337–344

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (21406017); China Petroleum & Chemical Corporation Science and Technology Project (216078); The Natural Science Foundation of the Jiangsu Higher Institutions of China (18KJA430005, 18KJA530001); Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_2614); The Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP); Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenzhong Ma or Jing Zhong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 861 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Li, T., Zhang, Q. et al. Preparation of hybrid membranes by incorporating hydrophilic UiO-66 nanoparticles for high-performance pervaporation dehydration of aprotic solvents. J Nanopart Res 22, 64 (2020). https://doi.org/10.1007/s11051-020-4778-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-4778-9

Keywords

Navigation