Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic myeloproliferative neoplasms

miR-146a rs2431697 identifies myeloproliferative neoplasm patients with higher secondary myelofibrosis progression risk

Abstract

Myelofibrosis (MF) occurs as part of the natural history of polycythemia vera (PV) and essential thrombocythemia (ET), and remarkably shortens survival. Although JAK2V617F and CALR allele burden are the main transformation risk factors, inflammation plays a critical role by driving clonal expansion toward end-stage disease. NF-κB is a key mediator of inflammation-induced carcinogenesis. Here, we explored the involvement of miR-146a, a brake in NF-κB signaling, in MPN susceptibility and progression. rs2910164 and rs2431697, that affect miR-146a expression, were analyzed in 967 MPN (320 PV/333 ET/314 MF) patients and 600 controls. We found that rs2431697 TT genotype was associated with MF, particularly with post-PV/ET MF (HR = 1.5; p < 0.05). Among 232 PV/ET patients (follow-up time=8.5 years), 18 (7.8%) progressed to MF, being MF-free-survival shorter for rs2431697 TT than CC + CT patients (p = 0.01). Multivariate analysis identified TT genotype as independent predictor of MF progression. In addition, TT (vs. CC + CT) patients showed increased plasma inflammatory cytokines. Finally, miR-146a−/− mice showed significantly higher Stat3 activity with aging, parallel to the development of the MF-like phenotype. In conclusion, we demonstrated that rs2431697 TT genotype is an early predictor of MF progression independent of the JAK2V617F allele burden. Low levels of miR-146a contribute to the MF phenotype by increasing Stat3 signaling.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Myelofibrosis-free survival probability.
Fig. 2: Myelofibrosis-free survival probability according to the MIR-146A SNP rs2431697 genotype.
Fig. 3: MIR-146A deficiency results in aging progressive Stat3 activation.

Similar content being viewed by others

References

  1. Cerquozzi S, Tefferi A. Blast transformation and fibrotic progression in polycythemia vera and essential thrombocythemia: a literature review of incidence and risk factors. Blood Cancer J. 2015;5:e366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vannucchi AM, Antonioli E, Guglielmelli P, Rambaldi A, Barosi G, Marchioli R, et al. Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia. Blood. 2007;110:840–6.

    Article  CAS  PubMed  Google Scholar 

  3. Rumi E, Cazzola M. Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. Blood. 2017;129:680–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tefferi A, Lasho TL, Guglielmelli P, Finke CM, Rotunno G, Elala Y, et al. Targeted deep sequencing in polycythemia vera and essential thrombocythemia. Blood Adv. 2016;1:21–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, et al. Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med. 2018;379:1416–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hasselbalch HC. Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer? Blood. 2012;119:3219–25.

    Article  CAS  PubMed  Google Scholar 

  7. Kleppe M, Kwak M, Koppikar P, Riester M, Keller M, Bastian L, et al. JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. Cancer Discov. 2015;5:316–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koschmieder S, Mughal TI, Hasselbalch HC, Barosi G, Valent P, Kiladjian JJ, et al. Myeloproliferative neoplasms and inflammation: whether to target the malignant clone or the inflammatory process or both. Leukemia. 2016;30:1018–24.

    Article  CAS  PubMed  Google Scholar 

  9. Bose P, Verstovsek S. JAK2 inhibitors for myeloproliferative neoplasms: what is next? Blood. 2017;130:115–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005;5:749–59.

    Article  CAS  PubMed  Google Scholar 

  12. Chorzalska AD, Morgan J, Treaba DO, Olszewski AJ, Kingston N, Cheng Y, et al. Bone marrow-specific loss of ABI1 induces myelofibrosis through a mechanism involving activation of NFκB. Blood. 2016;128:1203.

    Article  Google Scholar 

  13. Komura E, Tonetti C, Penard-Lacronique V, Chagraoui H, Lacout C, Lecouedic JP, et al. Role for the nuclear factor kappaB pathway in transforming growth factor-beta1 production in idiopathic myelofibrosis: possible relationship with FK506 binding protein 51 overexpression. Cancer Res. 2005;65:3281–9.

    Article  CAS  PubMed  Google Scholar 

  14. Brodersen P, Voinnet O. Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol. 2009;10:141–8.

    Article  CAS  PubMed  Google Scholar 

  15. Ma X, Becker Buscaglia LE, Barker JR, Li Y. MicroRNAs in NF-kappaB signaling. J Mol cell Biol. 2011;3:159–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M, et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med. 2011;208:1189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bhaumik D, Scott GK, Schokrpur S, Patil CK, Orjalo AV, Rodier F, et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging. 2009;1:402–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao JL, Rao DS, Boldin MP, Taganov KD, O’Connell RM, Baltimore D. NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci USA. 2011;108:9184–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Greten FR, Arkan MC, Bollrath J, Hsu LC, Goode J, Miething C, et al. NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell. 2007;130:918–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu T, Zhang L, Joo D, Sun SC. NF-kappaB signaling in inflammation. Signal Transduct Target Ther. 2017;2 pii: 17023.

  21. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 2006;103:12481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guglielmelli P, Tozzi L, Pancrazzi A, Bogani C, Antonioli E, Ponziani V, et al. MicroRNA expression profile in granulocytes from primary myelofibrosis patients. Exp Hematol. 2007;35:1708–18.

    Article  CAS  PubMed  Google Scholar 

  23. Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A, et al. Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype. Nat Med. 2010;16:49–58.

    Article  CAS  PubMed  Google Scholar 

  24. Lofgren SE, Frostegard J, Truedsson L, Pons-Estel BA, D’Alfonso S, Witte T, et al. Genetic association of miRNA-146a with systemic lupus erythematosus in Europeans through decreased expression of the gene. Genes Immun. 2012;13:268–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci USA. 2008;105:7269–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jeon YJ, Kim OJ, Kim SY, Oh SH, Oh D, Shin BS, et al. Association of the miR-146a, miR-149, miR-196a2, and miR-499 polymorphisms with ischemic stroke and silent brain infarction risk. Arterioscler Thromb Vasc Biol. 2013;33:420–30.

    Article  CAS  PubMed  Google Scholar 

  27. Roldan V, Arroyo AB, Salloum-Asfar S, Manzano-Fernandez S, Garcia-Barbera N, Marin F, et al. Prognostic role of MIR146A polymorphisms for cardiovascular events in atrial fibrillation. Thromb Haemost. 2014;112:781–8.

    Article  PubMed  Google Scholar 

  28. Barosi G, Mesa RA, Thiele J, Cervantes F, Campbell PJ, Verstovsek S, et al. Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the International Working Group for Myelofibrosis Research and Treatment. Leukemia. 2008;22:437–8.

    Article  CAS  PubMed  Google Scholar 

  29. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.

    Article  CAS  PubMed  Google Scholar 

  30. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.

    Article  CAS  PubMed  Google Scholar 

  31. Lay M, Mariappan R, Gotlib J, Dietz L, Sebastian S, Schrijver I, et al. Detection of the JAK2 V617F mutation by LightCycler PCR and probe dissociation analysis. J Mol Diagnostics. 2006;8:330–4.

    Article  CAS  Google Scholar 

  32. Senin A, Fernandez-Rodriguez C, Bellosillo B, Camacho L, Longaron R, Angona A, et al. Non-driver mutations in patients with JAK2V617F-mutated polycythemia vera or essential thrombocythemia with long-term molecular follow-up. Ann Hematol. 2018;97:443–51.

    Article  CAS  PubMed  Google Scholar 

  33. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90.

    Article  CAS  PubMed  Google Scholar 

  34. Furtado LV, Weigelin HC, Elenitoba-Johnson KS, Betz BL. Detection of MPL mutations by a novel allele-specific PCR-based strategy. J Mol Diagnostics. 2013;15:810–8.

    Article  CAS  Google Scholar 

  35. Sole X, Guino E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006;22:1928–9.

    Article  CAS  PubMed  Google Scholar 

  36. Tefferi A, Lasho TL, Schwager SM, Strand JS, Elliott M, Mesa R, et al. The clinical phenotype of wild-type, heterozygous, and homozygous JAK2V617F in polycythemia vera. Cancer. 2006;106:631–5.

    Article  CAS  PubMed  Google Scholar 

  37. Alvarez-Larran A, Bellosillo B, Martinez-Aviles L, Saumell S, Salar A, Abella E, et al. Postpolycythaemic myelofibrosis: frequency and risk factors for this complication in 116 patients. Br J Haematol. 2009;146:504–9.

    Article  CAS  PubMed  Google Scholar 

  38. Klein J, Moeschberger ML. Survival analysis: techniques for censored and truncated data. 2nd ed. New York: Springer Nature; 2010.

  39. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    Article  CAS  PubMed  Google Scholar 

  40. Barbui T, Thiele J, Passamonti F, Rumi E, Boveri E, Ruggeri M, et al. Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study. J Clin Oncol. 2011;29:3179–84.

    Article  PubMed  Google Scholar 

  41. Labbaye C, Testa U. The emerging role of MIR-146A in the control of hematopoiesis, immune function and cancer. J Hematol Oncol. 2012;5:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Magilnick N, Reyes EY, Wang WL, Vonderfecht SL, Gohda J, Inoue JI, et al. miR-146a-Traf6 regulatory axis controls autoimmunity and myelopoiesis, but is dispensable for hematopoietic stem cell homeostasis and tumor suppression. Proc Natl Acad Sci USA. 2017;114:E7140–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Su YL, Wang X, Mann M, Adamus TP, Wang D, Moreira DF, et al. Myeloid cell-targeted miR-146a mimic inhibits NF-kB-driven inflammation and leukemia progression in vivo. Blood. 2019;135:167–180.

  44. Votavova H, Grmanova M, Dostalova Merkerova M, Belickova M, Vasikova A, Neuwirtova R, et al. Differential expression of microRNAs in CD34+ cells of 5q- syndrome. J Hematol Oncol. 2011;4:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Masselli E, Carubbi C, Cambo B, Pozzi G, Gobbi G, Mirandola P, et al. The -2518 A/G polymorphism of the monocyte chemoattractant protein-1 as a candidate genetic predisposition factor for secondary myelofibrosis and biomarker of disease severity. Leukemia. 2018;32:2266–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pietra D, Rumi E, Ferretti VV, Di Buduo CA, Milanesi C, Cavalloni C, et al. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia. 2016;30:431–8.

    Article  CAS  PubMed  Google Scholar 

  47. Tefferi A, Vaidya R, Caramazza D, Finke C, Lasho T, Pardanani A. Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J Clin Oncol. 2011;29:1356–63.

    Article  CAS  PubMed  Google Scholar 

  48. Vaidya R, Gangat N, Jimma T, Finke CM, Lasho TL, Pardanani A, et al. Plasma cytokines in polycythemia vera: phenotypic correlates, prognostic relevance, and comparison with myelofibrosis. Am J Hematol. 2012;87:1003–5.

    Article  CAS  PubMed  Google Scholar 

  49. Panteli KE, Hatzimichael EC, Bouranta PK, Katsaraki A, Seferiadis K, Stebbing J, et al. Serum interleukin (IL)-1, IL-2, sIL-2Ra, IL-6 and thrombopoietin levels in patients with chronic myeloproliferative diseases. Br J Haematol. 2005;130:709–15.

    Article  CAS  PubMed  Google Scholar 

  50. Fan Y, Mao R, Yang J. NF-kappaB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein & Cell. 2013;4:176–85.

    Article  CAS  Google Scholar 

  51. Pietras EM. Inflammation: a key regulator of hematopoietic stem cell fate in health and disease. Blood. 2017;130:1693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stickel N, Hanke K, Marschner D, Prinz G, Kohler M, Melchinger W, et al. MicroRNA-146a reduces MHC-II expression via targeting JAK/STAT signaling in dendritic cells after stem cell transplantation. Leukemia. 2017;31:2732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lam LT, Wright G, Davis RE, Lenz G, Farinha P, Dang L, et al. Cooperative signaling through the signal transducer and activator of transcription 3 and nuclear factor-{kappa}B pathways in subtypes of diffuse large B-cell lymphoma. Blood. 2008;111:3701–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chorzalska A, Morgan J, Ahsan N, Treaba DO, Olszewski AJ, Petersen M, et al. Bone marrow-specific loss of ABI1 induces myeloproliferative neoplasm with features resembling human myelofibrosis. Blood. 2018;132:2053–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Instituto de Salud Carlos III and Fondo Europeo de Desarrollo Regional (FEDER; grant no. PI18/0316; PI17/0051; and PI16/0153 to BB [2017SGR205]) and Fundación Séneca (19873/GERM/15; 20644/JLI/18). ABA and AMR-G have a research Fellowship from Sociedad Española de Trombosis y Hemostasia (SETH) and from Instituto de Salud Carlos III (FI18/0045), respectively. This study was partially funded by Novartis International (CINC424AES05T). The authors thank Humberto Gómez (Department of Epidemiology, Servicio Murciano de Salud, Murcia, Spain) for his assistance in invaluable help with the statistical analysis.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

ABA, BB, LZ, RTM, EJC, RC, AMR-G, and FFM collected the data and performed the molecular studies. BB and CFR performed the NGS studies. ABA, EJC, AMR-G, and FFM performed ELISAs and Luminex assay. IA performed histological studies. ABA, BB, LZ, AAL, JCHB, JMHR, RGC, and CM analyzed and interpreted the results and wrote the paper. ABA, BB, LZ, JCHB, JMHR, EL, CGH, AK, DVF-S, MTG-C, RA, CB, PV, VGG, BA, NE, RC, EJC, and RTM collected the data and approved the final version. FFM, RGC, and CM designed the study. ABA, EJC, RTM, and FFM performed the statistical analysis. All authors participated in drafting the paper and approved the final version of the paper for submission.

Corresponding author

Correspondence to F. Ferrer-Marín.

Ethics declarations

Conflict of interest

This study was partially funded by Novartis International (CINC424AES05T).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrer-Marín, F., Arroyo, A.B., Bellosillo, B. et al. miR-146a rs2431697 identifies myeloproliferative neoplasm patients with higher secondary myelofibrosis progression risk. Leukemia 34, 2648–2659 (2020). https://doi.org/10.1038/s41375-020-0767-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-020-0767-3

This article is cited by

Search

Quick links