Skip to main content
Log in

Cu doped MnO2/γ-Al2O3: a facile and efficient catalyst for the degradation of Na2S in waste water under ambient conditions

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A series Cu decorated MnO2/γ-Al2O3 catalysts (Cu load, 1%, 3% and 5%) was fabricated by facile co-impregnation method, and investigated for the catalytic oxidative removal Na2S in waste water. Compared with MnO2/γ-Al2O3, the catalytic activity and stability of Cu-MnO2/γ-Al2O3, was enhanced by modifying with Cu element. XRD, SEM, BET, H2-TPR and XPS were carried out to characterize these catalyst. XRD and BET show the Cu successfully decorated on the MnO2/γ-Al2O3, and catalyst’s pristine structure are well maintained. SEM shows that the doped Cu species benefits to the uniform dispersion of Mn species, H2-TPR suggests that the reodox capacity of Cu decorated catalysts were improved after doping with Cu, and XPS shows that doped Cu produces higher concentration of Mn4+ and Oads (surface active oxygen species), also expediting the redox cycling between Mn4+/Mn3+ and the promote the Oads production, which resulting in the enhancement of redox properties. Hence, 3%Cu-MnO2/γ-Al2O3 catalyst could achieve 97.5% degradation of Na2S in waste water at room conditions in 2 h, by the help of air, this result is superior to other published work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vaiopoulou E, Melidis P, Aivasidis A (2005) Water Res 39:4101–4109

    CAS  PubMed  Google Scholar 

  2. Altaş L, Büyükgüngör H (2008) J Hazard Mater 153:462–469

    PubMed  Google Scholar 

  3. Rodriguez A, Ovejero G, Romero MD, Diaz C, Barreiro M (2008) J Supercrit Fluids 46:163–172

    CAS  Google Scholar 

  4. Hurse TJ, Abeydeera WPP (2002) J Chromatogr A 942:201–210

    CAS  PubMed  Google Scholar 

  5. Nhi BD, Maratovich AR, Garipovna AA, Ivanova AS (2014) J Sulfur Chem 35:74–85

    CAS  Google Scholar 

  6. Vu ND, Bui ND, Minh TT, Dam HTT, Hang TT (2016) J Electron Mater 45:2316–2321

    Google Scholar 

  7. Hoffmann MR, Lim BC (1979) Environ Sci Technol 13:1406–1414

    CAS  Google Scholar 

  8. Allen SE, Walvoord RR, Rosaura PS, Kozlowski MC (2013) Chem Rev 113:6234–6458

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wenfeng WU, Zaihui FU, Tang S, Shuai Z, Wen XU, Yue M, Sun S, Jie D, Liu Y, Yin D (2015) Appl Catal B 164:113–119

    Google Scholar 

  10. Widger LR, Siegler MA, Goldberg DP (2013) Polyhedron 58:179–189

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Speier G, Bagi N, Kaizer J (2015) Rsc Adv 5:45983–45986

    Google Scholar 

  12. Song G, Wang F, Zhang H, Lu X, Wang C (1998) Synth Commun 28:2783–2787

    CAS  Google Scholar 

  13. Ye W, Yang W, Yin X, Ying L (2016) J Environ Eng 4:3415–3425

    Google Scholar 

  14. Velusamy S, Kumar AV, Saini R, Punniyamurthy T (2005) Tetrahedron Lett 46:3819–3822

    CAS  Google Scholar 

  15. Dell'Anna MM, Mastrorilli P, Nobile CF (1996) J Mol Catal A 108:57–62

    CAS  Google Scholar 

  16. Liao X, Hu Z, Ma L, Hao Q, Lu S (2018) Chem Eng J 351:280–294

    CAS  Google Scholar 

  17. Liang Q, Xiaodong WU, Duan W, Haibo XU (2008) Catal Today 139:113–118

    CAS  Google Scholar 

  18. Pei J, Xu H, Yi L (2015) Build Environ 84:134–141

    Google Scholar 

  19. Elmhamdi A, Pascual L, Nahdi K, Martínez-Arias A (2017) Appl Catal B 217:1–11

    CAS  Google Scholar 

  20. Roshani B, Mcmaster I, Rezaei E, Soltan J (2014) Sep Purif Technol 135:158–164

    CAS  Google Scholar 

  21. Prabu K, Prabu M, Venugopal AK, Venugopalan AT, Sandilya WVYS, Gopinath CS, Raja T (2016) Appl Catal A 525:237–246

    CAS  Google Scholar 

  22. He S, Luan P, Mo L, Xu J, Li J, Zhu L, Zeng J (2018) BioResources 13:3686–3703

    CAS  Google Scholar 

  23. Yoo JB, Bang S, Kim K, Li C, Ji MK, Hur N (2016) Rsc Adv 6:113682–113688

    CAS  Google Scholar 

  24. Carvalho LMD, Schwedt G (2005) J Chromatogr A 1099:185–190

    PubMed  Google Scholar 

  25. Zhang T, Wang D, Gao Z, Zhao K, Gu Y, Zhang Y, He D (2016) Rsc Adv 6:70261–70270

    CAS  Google Scholar 

  26. Jing L, Zhu P, Zuo S, Huang Q, Zhou R (2010) Appl Catal A 381:261–266

    Google Scholar 

  27. Cai L, Hu Z, Branton P, Li W (2014) Chin J Catal 35:159–167

    CAS  Google Scholar 

  28. Wagloehner S, Nitzer-Noski M, Kureti S (2015) Chem Eng J 259:492–504

    CAS  Google Scholar 

  29. Chen H, Sayari A, Adnot A, Larachi FÇ (2001) Appl Catal B 32:195–204

    Google Scholar 

  30. Liu Z, Hao J, Fu L, Zhu T, Li J, Cui X (2004) Appl Catal B 48:37–48

    CAS  Google Scholar 

  31. Yang Y, Huang J, Wang S, Deng S, Wang B, Gang Y (2013) Appl Catal B 142:568–578

    Google Scholar 

  32. Jia J, Zhang P, Long C (2016) Appl Catal B 189:210–218

    CAS  Google Scholar 

  33. Min W, Zhang L, Huang W, Zhou Y, Han Z, Jian L, Tian J, Kan X, Shi J (2017) Rsc Adv 7:14809–14815

    Google Scholar 

  34. Bai B, Li J, Hao J (2015) AAppl Catal B 164:241–250

    CAS  Google Scholar 

  35. Qi L, Yu Q, Dai Y, Tang C, Liu L, Zhang H, Gao F, Dong L, Chen Y (2012) Appl Catal B 119:308–320

    Google Scholar 

  36. Sun Y, Yang Z, Tian P, Sheng Y, Xu J, Han Y-F (2019) Appl Catal B 244:1–10

    CAS  Google Scholar 

  37. Xin Z, Tang Y, Qu S, Da J, Hao Z (2015) Acs Catal 5:1053–1067

    Google Scholar 

  38. Kantcheva M (2001) J Catal 204:479–494

    CAS  Google Scholar 

  39. Toops TJ, Smith DB, Epling WS, Parks JE, Partridge WP (2005) Appl Catal B 58:255–264

    CAS  Google Scholar 

  40. Zhu W, Wang C, Li H, Wu P, Xun S, Jiang W, Chen Z, Zhao Z, Li H (2015) Green Chem 17:2464–2472

    CAS  Google Scholar 

  41. Wang X, Yao J, Wang S, Pan X, Xiao R, Huang Q, Wang Z, Qu R (2018) Chemosphere 201:224–233

    CAS  PubMed  Google Scholar 

  42. García-Gutiérrez JL, Fuentes GA, Hernández-Terán ME, Murrieta F, Navarrete J, Jiménez-Cruz F (2006) Appl Catal A 305:15–20

    Google Scholar 

  43. Hu L, Chen W, Xie X, Liu N, Yang Y, Wu H, Yao Y, Pasta M, Alshareef HN, Cui Y (2011) ACS Nano 5:8904–8913

    CAS  PubMed  Google Scholar 

  44. Andersen NI, Serov A, Atanassov P (2015) Appl Catal B 163:623–627

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project from the Tianjin Education Commission (2018KJ111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 379 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, W., Zhao, R., Huang, X. et al. Cu doped MnO2/γ-Al2O3: a facile and efficient catalyst for the degradation of Na2S in waste water under ambient conditions. Reac Kinet Mech Cat 129, 1047–1059 (2020). https://doi.org/10.1007/s11144-020-01755-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01755-2

Keywords

Navigation