Skip to main content
Log in

Oxovanadium(IV) complex supported on the surface of magnetite as a recyclable nanocatalyst for the preparation of 2-amino-4H-benzo[h]chromenes and selective oxidation of sulfides

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this work, an oxovanadium(IV) complex supported on the surface of modified Fe3O4 with a silica shell has been synthesized. The obtained nanostructures were characterized using FT-IR, XRD, SEM, EDX, VSM, TGA and ICP-AES analyses. The synthesized magnetic nanocatalyst has been applied as an efficient catalyst for the synthesis of 2-amino-4H-benzo[h]chromenes via three-component one-pot reaction and also selective oxidation of sulfides to sulfoxides under solvent-free conditions. The synthesized nanocatalyst could be easily separated from the reaction mixture using an external magnet and reused several consecutive runs for both reactions without noticeable reducing in its catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7

Similar content being viewed by others

References

  1. Bell AT (2003) Sciencece 299:1688–1691

    CAS  Google Scholar 

  2. Astruc D (2008) Nanoparticles and catalysis. Wiley, Weinheim, pp 1–48

    Google Scholar 

  3. Lu F, Astruc D (2020) Coord Chem Rev 408:213180

    Google Scholar 

  4. de Jong K (2009) Synthesis of solid catalysts. Wiley, Weinheim

    Google Scholar 

  5. Gupta K, Sutar AK, Lin C-C (2009) Coord Chem Rev 253:1926–1946

    CAS  Google Scholar 

  6. Aghajani M, Safaei E, Karimi B (2017) Synth Met 233:63–73

    CAS  Google Scholar 

  7. Saberikia I, Safaei E, Karimi B et al (2017) Chem Sel 2:11164–11171

    CAS  Google Scholar 

  8. Latypova AR, Tarasyuk IA, Filippov DV et al (2019) Reac Kinet Mech Cat 127:741–755

    CAS  Google Scholar 

  9. Kaluža L, Karban J, Gulková D (2019) Reac Kinet Mech Cat 127:887–902

    Google Scholar 

  10. Glotov A, Stavitskaya A, Chudakov Y et al (2019) Bull Chem Soc Jpn 92:61–69

    CAS  Google Scholar 

  11. Imaoka T, Yamamoto K (2019) Bull Chem Soc Jpn 92:941–948

    CAS  Google Scholar 

  12. Lin B, Lin Z, Chen S et al (2019) Dalton Trans 48:8279–8287

    CAS  PubMed  Google Scholar 

  13. Kwak K, Lee D (2018) Acc Chem Res 52:12–22

    PubMed  Google Scholar 

  14. Teja AS, Koh P-Y (2009) Prog Cryst Growth Charact Mater 55:22–45

    CAS  Google Scholar 

  15. Wang D, Astruc D (2014) Chem Rev 114:6949–6985

    CAS  PubMed  Google Scholar 

  16. Rossi LM, Costa NJ, Silva FP, Wojcieszak R (2014) Green Chem 16:2906–2933

    CAS  Google Scholar 

  17. Schneider MGM, Lassalle VL (2017) Biomed Pharmacother 93:1098–1115

    Google Scholar 

  18. Bilal M, Zhao Y, Rasheed T et al (2018) Int J Biol Macromol 120:2530–2544

    CAS  PubMed  Google Scholar 

  19. Tsang SC, Yu CH, Gao X, Tam K (2006) J Phys Chem B 110:16914–16922

    CAS  Google Scholar 

  20. Lien Y-H, Wu T-M (2008) J Colloid Interface Sci 326:517–521

    CAS  PubMed  Google Scholar 

  21. Lu Y, Yin Y, Mayers BT, Xia Y (2002) Nano Lett 2:183–186

    CAS  Google Scholar 

  22. Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Chem Rev 112:5818–5878

    CAS  PubMed  Google Scholar 

  23. Karimi B, Mansouri F, Mirzaei HM (2015) ChemCatChem 7:1736–1789

    CAS  Google Scholar 

  24. Lim CW, Lee IS (2010) Nano Today 5:412–434

    CAS  Google Scholar 

  25. Ghorbani-Choghamarani A, Darvishnejad Z, Norouzi M (2015) Appl Organomet Chem 29:170–175

    CAS  Google Scholar 

  26. Gawande MB, Branco PS, Varma RS (2013) Chem Soc Rev 42:3371–3393

    CAS  PubMed  Google Scholar 

  27. Baig RN, Nadagouda MN, Varma RS (2015) Coord Chem Rev 287:137–156

    Google Scholar 

  28. Keshavarz M, Abdoli-Senejani M, Hojati SF et al (2018) Reac Kinet Mech Cat 124:757–766

    CAS  Google Scholar 

  29. Tamoradi T, Irandoust A, Ghadermazi M (2019) J Iran Chem Soc 16:1723–1733

    CAS  Google Scholar 

  30. Li Z, Wu S, Zheng D et al (2014) ChemPlusChem 79:716–724

    CAS  Google Scholar 

  31. Martins NM, Pombeiro AJ, Martins LM (2019) Catal Commun 125:15–20

    CAS  Google Scholar 

  32. Karimpour T, Safaei E, Karimi B, Lee YI (2018) ChemCatChem 10:1889–1899

    CAS  Google Scholar 

  33. Bezaatpoura A, Askarizadehb E, Akbarpoura SH, Amiria M, Babaei B (2017) Mol Catal 436:199–209

    Google Scholar 

  34. Zhou Q, Wan Z, Yuan X et al (2016) Appl Organomet Chem 30:215–220

    CAS  Google Scholar 

  35. Bhat PB, Rajarao R, Sahajwalla V et al (2015) J Mol Catal A 409:42–49

    CAS  Google Scholar 

  36. Bagherzadeh M, Bahjati M, Mortazavi-Manesh A (2019) J Organomet Chem 897:200–206

    CAS  Google Scholar 

  37. Veisi H, Rashtiani A, Rostami A et al (2019) Polyhedron 157:358–366

    CAS  Google Scholar 

  38. Khaledian D, Rostami A, Rouhani S (2019) Catal Commun 124:46–50

    CAS  Google Scholar 

  39. Fernández I, Khiar N (2003) Chem Rev 103:3651–3706

    PubMed  Google Scholar 

  40. Kazemi M, Ghobadi M (2017) Nanotechnol Rev 6:549–571

    CAS  Google Scholar 

  41. Weber L (2002) Drug Discov Today 7:143–147

    CAS  PubMed  Google Scholar 

  42. Chen M-N, Mo L-P, Cui Z-S et al (2019) Curr Opin Green Sustain Chem 15:27–37

    Google Scholar 

  43. Kohzadian A, Zare A (2019) Res Chem Intermed 45:5473–5485

    CAS  Google Scholar 

  44. Wang Z, Shen B, Aihua Z, He N (2005) Chem Eng J 113:27–34

    Google Scholar 

  45. Masteri-Farahani M, Tayyebi N (2011) J Mol Catal A 348:83–87

    CAS  Google Scholar 

  46. Kumar D, Reddy VB, Mishra BG, Rana R, Nadagouda MN, Varma RS (2007) Tetrahedron 63:3093–3097

    CAS  Google Scholar 

  47. Khurana JM, Nand B, Saluja P (2010) Tetrahedron 66:5637–5641

    CAS  Google Scholar 

  48. Weast RC, Astle MJ, Beyer WH (1989) CRC handbook of chemistry and physics, vol 1990. CRC Press, Boca Raton

    Google Scholar 

  49. Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J-M (2011) Chem Rev 111:3036–3075

    CAS  Google Scholar 

  50. Ren Y-M, Cai C (2008) Catal Commun 9:1017–1020

    Google Scholar 

  51. Khoobi M, Ma’mani L, Rezazadeh F, Zareie Z, Foroumadi A, Ramazani A, Shafiee A (2012) J Mol Catal A 359:74–80

    CAS  Google Scholar 

  52. Aghajani M, Monadi N (2017) J Iran Chem Soc 14:963–975

    CAS  Google Scholar 

  53. Monadi N, Moradi E (2018) Transit Met Chem 43:161–170

    CAS  Google Scholar 

  54. Aghajani M, Monadi N (2018) Appl Organomet Chem. https://doi.org/10.1002/aoc.4433

    Article  Google Scholar 

  55. Aghajani M, Monadi N (2019) J Chin Chem Soc 66:775–784

    CAS  Google Scholar 

  56. Farahi M, Karami B, Alipour S, Moghadam LT (2014) Acta Chim Slov 61:94–99

    CAS  PubMed  Google Scholar 

  57. Jin TS, Zhang JS, Liu LB, Wang AQ, Li TS (2006) Synth Commun 36:2009–2015

    CAS  Google Scholar 

  58. Heravi MM, Bakhtiari Kh, Zadsirjan V, Bamoharram FF, Heravi MO (2007) Bioorg Med Chem Lett 17:4262–4265

    CAS  PubMed  Google Scholar 

  59. Divsalar N, Monadi N, Tajbaksh M (2016) J Nanostruct 6:312–321

    CAS  Google Scholar 

  60. Ghorbani-Choghamarani A, Ghasemi B, Safari Z, Azadi G (2015) Catal Commun 60:70–75

    CAS  Google Scholar 

  61. Nikoorazm M, Ghorbani-Choghamarani A, Mahdavi H, Esmaeili SM (2015) Microporous Mesoporous Mater 211:174–181

    CAS  Google Scholar 

  62. Islam SM, Roy AS, Mondal P, Tuhina K, Mobarak M, Mondal J (2012) Tetrahedron Lett 53:127–131

    CAS  Google Scholar 

  63. Hajjami M, Kolivand S (2016) Appl Organomet Chem 30:282–288

    CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the University of Mazandaran Research Councils for financial support of this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niaz Monadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2298 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monadi, N., Davoodi, H. & Aghajani, M. Oxovanadium(IV) complex supported on the surface of magnetite as a recyclable nanocatalyst for the preparation of 2-amino-4H-benzo[h]chromenes and selective oxidation of sulfides. Reac Kinet Mech Cat 129, 659–677 (2020). https://doi.org/10.1007/s11144-020-01749-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01749-0

Keywords

Navigation