Skip to main content
Log in

Multifunctional biogenically synthesized porous multi-walled carbon nanotubes dispersed polymer electrolyte-based supercapacitor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this present study, we report multi-functional application of as synthesized carbon nanotubes as both electrolyte and electrode material for supercapacitor due to its porous nature and wide-ranging electronic properties. Nitrogen adsorption–desorption studies revealed the surface area of 476.9 m2 g−1. The average pore size of the so-formed carbon nanotubes was found to be 3.11 nm and volume of 0.427 cc g−1 by BJH method. These porous structures of carbon material were utilized as a filler in PVDF-HFP:NH4I polymer electrolyte and additionally optimized to get higher conductivity of 2.09E−4 S cm−1 at room temperature which is well suitable for supercapacitor fabrication. Supercapacitor fabricated consisted of graphite sheet was used as the current collector, carbon nanotubes as the electrode and optimized polymer electrolyte as the dielectric, showed capacitance of 35 F g−1 which is in accordance with the value obtained by low-frequency impedance studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Singh, A.R. Polu, B. Bhattacharya, H.-W. Rhee, C. Varlikli, P.K. Singh, Renew. Sustain. Energy Rev. 65, 1098 (2016)

    Google Scholar 

  2. H. Wang, Y. Liu, M. Li, H. Huang, H.M. Xu, R.J. Hong, H. Shen, Optoelectron. Adv. Mater. Rapid Commun. 4, 1166 (2010)

    Google Scholar 

  3. R. Singh, B. Bhattacharya, M. Gupta, Z.H. Khan, S.K. Tomar, V. Singh, P.K. Singh, Int. J. Hydrog. Energy 42, 14602 (2017)

    Google Scholar 

  4. Y. Ge, R. Jalili, C. Wang, T. Zheng, Y. Chao, G.G. Wallace, Electrochim. Acta 235, 348 (2017)

    Google Scholar 

  5. A. Ratan, S. Kunchakara, M. Dutt, A. Tripathi, V. Singh, Vacuum 169, 108939 (2019)

    ADS  Google Scholar 

  6. A. Ratan, S. Kunchakara, M. Dutt, A. Tripathi, V. Singh, Mater. Sci. Semicond. Process. 108, 104877 (2020)

    Google Scholar 

  7. A. Annu, A. Singh, P.K. Singh, B. Bhattacharya, J. Mater. Sci. Mater. Electron. 29, 9709 (2018)

    Google Scholar 

  8. M. Winter, R.J. Brodd, Chem. Rev. 104, 4245 (2004)

    Google Scholar 

  9. M.D. Stoller, R.S. Ruoff, Energy Environ. Sci. 3, 1294 (2010)

    Google Scholar 

  10. P. Tuhania, P.K. Singh, B. Bhattacharya, P.S. Dhapola, S. Yadav, P. Shukla, M. Gupta, High Perform. Polym. 30, 911 (2018)

    Google Scholar 

  11. S. Siyahjani, S. Oner, P.K. Singh, C. Varlikli, High Perform. Polym. 30, 971 (2018)

    Google Scholar 

  12. M.J. Shi, S.Z. Kou, B.S. Shen, J.W. Lang, Z. Yang, X.B. Yan, Chin. Chem. Lett. 25, 859 (2014)

    Google Scholar 

  13. E. Taer, M. Deraman, I.A. Talib, S.A. Hashmi, A.A. Umar, Electrochim. Acta 56, 10217 (2011)

    Google Scholar 

  14. Y. An, Y. Yang, Z. Hu, B. Guo, X. Wang, X. Yang, Q. Zhang, H. Wu, J. Power Sources 337, 45 (2017)

    ADS  Google Scholar 

  15. M. Suleman, Y. Kumar, S.A. Hashmi, Electrochim. Acta 182, 995 (2015)

    Google Scholar 

  16. M.K. Singh, M. Suleman, Y. Kumar, S.A. Hashmi, Energy 80, 465 (2015)

    Google Scholar 

  17. M.P.S. Mousavi, B.E. Wilson, S. Kashefolgheta, E.L. Anderson, S. He, P. Bühlmann, A. Stein, ACS Appl. Mater. Interfaces 8, 3396 (2016)

    Google Scholar 

  18. G.P. Pandey, Y. Kumar, S.A. Hashmi, Solid State Ion. 190, 93 (2011)

    Google Scholar 

  19. N. Böckenfeld, S.S. Jeong, M. Winter, S. Passerini, A. Balducci, J. Power Sources 221, 14 (2013)

    Google Scholar 

  20. L. Negre, B. Daffos, V. Turq, P.L. Taberna, P. Simon, Electrochim. Acta 206, 490 (2016)

    Google Scholar 

  21. S.A. Hashmi, H.M. Upadhyaya, Solid State Ion. 152–153, 883 (2002)

    Google Scholar 

  22. S.A. Hashmi, A. Kumar, S.K. Tripathi, Eur. Polym. J. 41, 1373 (2005)

    Google Scholar 

  23. S.A. Hashmi, S. Suematsu, K. Naoi, J. Power Sources 137, 145 (2004)

    ADS  Google Scholar 

  24. Y.S. Yun, H. Bak, H.J. Jin, Synth. Met. 160, 561 (2010)

    Google Scholar 

  25. G.A. Tiruye, D. Muñoz-Torrero, J. Palma, M. Anderson, R. Marcilla, J. Power Sources 279, 472 (2015)

    Google Scholar 

  26. L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38, 2520 (2009)

    Google Scholar 

  27. R. Ranu, Y. Chauhan, P.K. Singh, B. Bhattacharya, S.K. Tomar, Phase Transit. 89, 1146 (2016)

    Google Scholar 

  28. R. Ranu, Y. Chauhan, A. Ratan, P.K. Singh, B. Bhattacharya, S.K. Tomar, IET Nanobiotechnol. 13, 363 (2019)

    Google Scholar 

  29. C.W. Liew, S. Ramesh, A.K. Arof, Int. J. Hydrog. Energy 40, 852 (2015)

    Google Scholar 

  30. R. Singh, J. Baghel, S. Shukla, B. Bhattacharya, H.W. Rhee, P.K. Singh, Phase Transit. 87, 1237 (2014)

    Google Scholar 

  31. L. Bokobza, J. Zhang, Express Polym. Lett. 6, 601 (2012)

    Google Scholar 

  32. M.S. Azmina, A.B. Suriani, M. Salina, A.A. Azira, A.R. Dalila, N.A. Asli, J. Rosly, R.M. Nor, M. Rusop, Nano Hybrids 2, 43 (2012)

    Google Scholar 

  33. A.B. Suriani, N.A. Asli, M. Salina, M.H. Mamat, A.A. Aziz, A.N. Falina, M. Maryam, M.S. Shamsudin, R.M. Nor, S. Abdullah, M. Rusop, IOP Conf. Ser. Mater. Sci. Eng. 46, 012014 (2013)

    Google Scholar 

  34. S. Kunchakara, M. Dutt, A. Ratan, J. Shah, V. Singh, R.K. Kotnala, J. Porous Mater. 26, 389 (2019)

    Google Scholar 

  35. M. Kaur, A. Ratan, S. Kunchakara, M. Dutt, V. Singh, J. Porous Mater. 26, 239 (2019)

    Google Scholar 

  36. J.R. Magana, Y.V. Kolen’Ko, F.L. Deepak, C. Solans, R.G. Shrestha, J.P. Hill, K. Ariga, L.K. Shrestha, C. Rodriguez-Abreu, ACS Appl. Mater. Interfaces 8, 31231 (2016)

    Google Scholar 

  37. M. Maryam, A.B. Suriani, M.S. Shamsudin, M.R. Mahmood, Adv. Mater. Res. 626, 289 (2012)

    Google Scholar 

  38. M. Dutt, K. Suhasini, A. Ratan, J. Shah, R.K. Kotnala, V. Singh, J. Mater. Sci. Mater. Electron. 29, 20506 (2018)

    Google Scholar 

  39. R. Farma, M. Deraman, A. Awitdrus, I.A. Talib, E. Taer, N.H. Basri, J.G. Manjunatha, M.M. Ishak, B.N.M. Dollah, S.A. Hashmi, Bioresour. Technol. 132, 254 (2013)

    Google Scholar 

  40. U.M. Jibreel, B. Bhattacharya, P.K. Singh, Adv. Polym. Technol. 37, 542 (2018)

    Google Scholar 

  41. T. Wang, W. Liu, J. Tian, X. Shao, D. Sun, Polym. Compos. 25, 111 (2004)

    Google Scholar 

  42. A.S.A. Khiar, R. Puteh, A.K. Arof, Phys. B Condens. Matter 373, 23 (2006)

    ADS  Google Scholar 

  43. S.B. Aziz, Z.H.Z. Abidin, A.K. Arof, 2009 Int. Conf. Inf. Multimed. Technol. ICIMT 2009, 507 (2009)

    Google Scholar 

  44. S. Saxena, R. Ranu, C. Hait, S. Priya, R. Thapa, Appl. Nanosci. 4, 799 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the research facility and research scholars of Material Research Laboratory, Sharda University, India. Authors are very thankful to Prof. Vaishali Singh, GGS Indraprastha University, New Delhi for her support during the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachana Ranu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranu, R., Chauhan, Y., Ratan, A. et al. Multifunctional biogenically synthesized porous multi-walled carbon nanotubes dispersed polymer electrolyte-based supercapacitor. Appl. Phys. A 126, 242 (2020). https://doi.org/10.1007/s00339-020-3384-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3384-0

Keywords

Navigation