Skip to main content

Advertisement

Log in

Magnetic properties of (1 − x)Bi0.5Na0.5TiO3 + xSrCoO3δ solid-solution materials

  • Rapid communications
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

(1 − x)Bi0.5Na0.5TiO3 + xSrCoO3δ solid-solution system was synthesised through the simple sol–gel technique. X-ray diffraction and Raman scattering analyses were used to study the structure of (1 − x)Bi0.5Na0.5TiO3 + xSrCoO3δ system. Results showed that the SrCoO3δ materials dissolved well into the host Bi0.5Na0.5TiO3 crystal. The random incorporation of Sr and Co cations into the host Bi0.5Na0.5TiO3 crystal to form a solid solution resulted in reduced optical band-gap energy and induced the complex magnetic properties of host Bi0.5Na0.5TiO3 materials. The optical band-gap energy of pure Bi0.5Na0.5TiO3 materials was estimated to be approximately 3.09 eV, which decreased to 2.18 eV for 9 mol% SrCoO3δ solute incorporated into Bi0.5Na0.5TiO3 materials. The magnetic properties of Bi0.5Na0.5TiO3 materials were tuned as a function of SrCoO3δ concentration added into the host Bi0.5Na0.5TiO3 materials. The enhanced magnetic performance in SrCoO3δ-modified Bi0.5Na0.5TiO3 materials can be possibly applied in multifunction materials for electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. N.D. Quan, L.H. Bac, D.V. Thiet, V.N. Hung, D.D. Dung, Adv. Mater. Sci. Eng. 2014, 365391 (2014)

    Google Scholar 

  2. G.A. Smolensky, V.A. Isupov, A.I. Agranovskaya, N.N. Krainic, Fiz. Tverd. Tela 2, 2982–2985 (1960)

    Google Scholar 

  3. M. Naderer, T. Kainz, D. Schutz, K. Reichmann, J. Eur. Ceram. Soc. 34, 663–667 (2014)

    Google Scholar 

  4. Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, H.H. Chong, T.G. Park, D. Do, S.S. Kim, Appl. Phys. Lett. 96, 022901 (2010)

    ADS  Google Scholar 

  5. Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, T.G. Park, Appl. Phys. Lett. 98, 012902 (2011)

    ADS  Google Scholar 

  6. A. Moosavi, M.A. Bahrevar, A.R. Aghaei, P. Ramos, M. Alguero, H. Morin, J. Phys. D Appl. Phys. 47, 055304 (2014)

    ADS  Google Scholar 

  7. Q. Wang, J. Chen, L. Fan, H. Song, W. Gao, Y. Rong, L. Liu, L. Fang, X. Xing, J. Am. Ceram. Soc. 96, 3793–3797 (2013)

    Google Scholar 

  8. F.F. Guo, B. Yang, S.T. Zhang, X. Liu, L.M. Zheng, Z. Wang, F.M. Wu, D.L. Wang, W.W. Cao, J. Appl. Phys. 111, 124133 (2012)

    ADS  Google Scholar 

  9. H. Yu, Z.G. Ye, Appl. Phys. Lett. 93, 112902 (2008)

    ADS  Google Scholar 

  10. R. Tian, J. Chen, Q. Lu, S. Zhao, Ceram. Int. 43, 10314–10346 (2017)

    Google Scholar 

  11. Z. Tang, Z. Zhang, J. Chen, S. Zhao, J. Alloys Compd. 696, 1–8 (2017)

    Google Scholar 

  12. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)

    ADS  Google Scholar 

  13. J.P. Velev, S.S. Jaswal, E.Y. Tsymbal, Philos. Trans. R. Soc. A 369, 3069–3097 (2011)

    ADS  Google Scholar 

  14. S. Shevlin, Nat. Mater. 18, 191–192 (2019)

    Google Scholar 

  15. Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, Mater. Sci Pol. 27, 471–476 (2009)

    Google Scholar 

  16. Y. Wang, G. Xu, X. Ji, Z. Ren, W. Weng, P. Du, G. Shen, G. Han, J. Alloys Compd. 475, L25–L30 (2009)

    Google Scholar 

  17. L.T.H. Thanh, N.B. Doan, L.H. Bac, D.V. Thiet, S. Cho, P.Q. Bao, D.D. Dung, Mater. Lett. 186, 239–242 (2017)

    Google Scholar 

  18. L.T.H. Thanh, N.B. Doan, N.Q. Dung, L.V. Cuong, L.H. Bac, N.A. Duc, P.Q. Bao, D.D. Dung, J. Electron. Mater. 46, 3367–3372 (2017)

    ADS  Google Scholar 

  19. D.D. Dung, N.B. Doan, N.Q. Dung, N.H. Linh, L.H. Bac, L.T.H. Thanh, N.N. Trung, N.V. Duc, L.V. Cuong, D.V. Thiet, S. Cho, J. Supercond. Nov. Magn. 32, 3011–3018 (2019)

    Google Scholar 

  20. D.D. Dung, N.B. Doan, N.Q. Dung, L.H. Bac, N.H. Linh, L.T.H. Thanh, D.V. Thiet, N.N. Trung, N.C. Khang, T.V. Trung, N.V. Duc, J. Sci. Adv. Mater. Dev. 4, 584–590 (2019)

    Google Scholar 

  21. Y. Zhang, J. Hu, F. Gao, H. Liu, H. Qin, Comput. Theor. Chem. 967, 284–288 (2011)

    Google Scholar 

  22. L. Ju, C. Shi, L. Sun, Y. Zhang, H. Qin, J. Hu, J. Appl. Phys. 116, 083909 (2014)

    ADS  Google Scholar 

  23. M.M. Hue, N.Q. Dung, N.N. Trung, L.H. Bac, L.T.K. Phuong, N.V. Duc, D.D. Dung, Appl. Phys. A 124, 588 (2018)

    ADS  Google Scholar 

  24. M.M. Hue, N.Q. Dung, L.T.K. Phuong, N.N. Trung, N.V. Duc, L.H. Bac, D.D. Dung, J. Magn. Magn. Mater. 471, 164–168 (2019)

    ADS  Google Scholar 

  25. N.T. Hung, L.H. Bac, N.T. Hoang, P.V. Vinh, N.N. Trung, D.D. Dung, Phys. B 531, 75–78 (2018)

    ADS  Google Scholar 

  26. D.D. Dung, N.T. Hung, D. Odkhuu, J. Magn. Magn. Mater. 482, 31–37 (2019)

    ADS  Google Scholar 

  27. X. Liu, H. Fan, J. Shi, L. Wang, H. Du, RSC Adv. 6, 30623–30627 (2016)

    Google Scholar 

  28. N.H. Tuan, V.K. Anh, N.B. Doan, L.H. Bac, D.D. Dung, D. Odkhuu, J. Sol Gel Sci. Technol. 87, 528–536 (2018)

    Google Scholar 

  29. Y. Long, Y. Kaneko, S. Ishiwata, Y. Taguchi, Y. Tokura, J. Phys. Cond. Mater. 23, 245601 (2011)

    ADS  Google Scholar 

  30. M. Hoffmann, V.S. Borisov, S. Ostanin, I. Mertig, W. Hergert, A. Ernst, Phys. Rev. B 92, 094427 (2015)

    ADS  Google Scholar 

  31. A. Munoz, C. de la Calle, J.A. Alonso, P.M. Botta, V. Pardo, D. Baldomir, J. Rivas, Phys. Rev. B 78, 054404 (2008)

    ADS  Google Scholar 

  32. T. Takeda, Y. Yamaguchi, H. Watanabe, J. Phys. Soc. Jpn. 33, 970–972 (1972)

    ADS  Google Scholar 

  33. P. Bezdicka, A. Wattiaux, J.C. Grenier, M. Pouchard, P. Hagenmuller, Z. Anorg, Allg. Chem. 619, 7 (1993)

    Google Scholar 

  34. N.H. Tuan, L.H. Bac, L.V. Cuong, D.V. Thiet, T.V. Tam, D.D. Dung, J. Electron. Mater. 46, 3472–3478 (2017)

    ADS  Google Scholar 

  35. R.D. Shannon, Acta. Cryst. A 32, 751–767 (1976)

    Google Scholar 

  36. C. Chatzichristoduoulou, P. Norby, P.V. Hendriksen, M.B. Mogensen, J. Electroceram. 34, 100–107 (2015)

    Google Scholar 

  37. M.K. Niranjan, T. Karthik, S. Asthana, J. Pan, J. Appl. Phys. 113, 194106 (2013)

    ADS  Google Scholar 

  38. L.H. Bac, L.T.H. Thanh, N.V. Chinh, N.T. Khoa, D.V. Thiet, T.V. Trung, D.D. Dung, Mater. Lett. 164, 631–635 (2016)

    Google Scholar 

  39. M.M. Hejazi, E. Taghaddos, A. Safari, J. Mater. Sci. 48, 3511–3516 (2013)

    ADS  Google Scholar 

  40. F. Mircholi, H.G. Moghadam, Optik 126, 1505–1509 (2015)

    ADS  Google Scholar 

  41. H. Lu, S. Wang, X. Wang, J. Appl. Phys. 115, 124107 (2014)

    ADS  Google Scholar 

  42. N.H. Tuan, N.H. Linh, D. Odkhuu, N.N. Trung, D.D. Dung, J. Electron. Mater. 47, 3414–3420 (2018)

    ADS  Google Scholar 

  43. V. Schmitt, F. Raether, J. Eur. Ceram. Soc. 34, 15–21 (2014)

    Google Scholar 

  44. M. Qin, D. Lan, G. Wu, X. Qiao, H. Wu, Appl. Surf. Sci. 504, 144480 (2020)

    Google Scholar 

  45. H. Wu, M. Qin, L. Zhang, Compos. Part B Eng. 182, 1071620 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang Duc Dung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dung, D.D., Hung, N.T. Magnetic properties of (1 − x)Bi0.5Na0.5TiO3 + xSrCoO3δ solid-solution materials. Appl. Phys. A 126, 240 (2020). https://doi.org/10.1007/s00339-020-3409-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3409-8

Keywords

Navigation