Skip to main content
Log in

Bath temperature-dependent structural properties, coercive force, surface morphology and surface texture of electrochemically grown nanostructured Ni–Co/ITO thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work investigates the role of the temperature of the bath on the structural properties, coercive force, surface morphology and surface texture of the electrochemically produced binary Ni–Co/ITO deposits in detail and presents the first results. It was found that the Ni/Co ratio of the deposit structure was not affected by increasing bath temperature. All resultant Ni–Co thin films comprising 19.5–20 wt% Co and 80–80.5 wt% Ni displayed a slightly anomalous co-deposition behavior. In all deposits, the crystallographic phase structure was the face-centered cubic with the [111] out-of-plane texture. Raising bath temperature gave rise to an improvement in the crystallization and an increment in the crystallite size. The roughness of the surface structure and the size of the surface particles first decreased with increasing bath temperature from 22 to 32 °C and then increased with further increase in the bath temperature. From the surface texture analysis, it was understood that increasing bath temperature did not affect the nature of the surface texture. When the bath temperature was 32 °C, the deposit exhibited the lowest coercive force. The results also indicated that the surface roughness and the particle size were predominant factors on the coercive force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L.D. Rafailović, H.P. Karnthaler, T. Trišović, D.M. Minić, Microstructure and mechanical properties of disperse Ni–Co alloys electrodeposited on Cu substrates. Mater. Chem. Phys. 120, 409–416 (2010)

    Article  Google Scholar 

  2. M. Srivastava, V.K. William Grips, K.S. Rajam, Electrodeposition of Ni–Co composites containing nano-CeO2 and their structure, properties. Appl. Surf. Sci. 257, 717–722 (2010)

    Article  ADS  Google Scholar 

  3. V.M. Maksimović, U.Č. Lačnjevac, M.M. Stoiljković, M.G. Pavlović, V.D. Jović, Morphology and composition of Ni–Co electrodeposited powders. Mater. Charact. 62, 1173–1179 (2011)

    Article  Google Scholar 

  4. F.M. Bouzit, A. Nemamcha, H. Moumeni, J.L. Rehspringer, Morphology and Rietveld analysis of nanostructured Co–Ni electrodeposited thin films obtained at different current densities. Surf. Coat. Technol. 315, 172–180 (2017)

    Article  Google Scholar 

  5. Sh Hassani, K. Raeissi, M. Azzi, D. Li, M.A. Golozar, J.A. Szpunar, Improving the corrosion and tribocorrosion resistance of Ni–Co nanocrystalline coatings in NaOH solution. Corros. Sci. 51, 2371–2379 (2009)

    Article  Google Scholar 

  6. M.M. Kamel, Anomalous co-deposition of Co–Ni: alloys from gluconate baths. J. Appl. Electrochem. 37, 483–489 (2007)

    Article  Google Scholar 

  7. C. Lupi, A. Dell'Era, M. Pasquali, P. Imperatori, Composition, morphology, structural aspects and electrochemical properties of Ni–Co alloy coatings. Surf. Coat. Technol. 205, 5394–5399 (2011)

    Article  Google Scholar 

  8. L. Wang, Y. Gao, Q. Xue, H. Liu, T. Xu, Microstructure and tribological properties of electrodeposited Ni–Co alloy deposits. Appl. Surf. Sci. 242, 326–332 (2005)

    Article  ADS  Google Scholar 

  9. C.K. Chung, W.T. Chang, Effect of pulse frequency and current density on anomalous composition and nanomechanical property of electrodeposited Ni–Co films. Thin solid films 517, 4800–4804 (2009)

    Article  ADS  Google Scholar 

  10. Y.H. You, C.D. Gu, X.I. Wang, J.P. Tu, Electrodeposition of Ni–Co alloys from a deep eutectic solvent. Surf. Coat. Technol. 206, 3632–3638 (2012)

    Article  Google Scholar 

  11. R. Oriňáková, A. Oriňák, G. Vering, I. Talian, R.M. Smith, H.F. Arlinghaus, Influence of pH on the electrolytic deposition of Ni–Co films. Thin solid films 516, 3045–3050 (2008)

    Article  ADS  Google Scholar 

  12. J. Vijayakumar, S. Mohan, S.S. Yadav, Effects of primary dicarboxylic acids on microstructure and mechanical properties of sub-microcrystalline Ni–Co alloys. J. Alloys Compd. 509, 9692–9695 (2011)

    Article  Google Scholar 

  13. B. Bakhit, A. Akbari, Nanocrystalline Ni–Co alloy coatings: electrodeposition using horizontal electrodes and corrosion resistance. J. Coat. Technol. Res. 10, 285–295 (2013)

    Article  Google Scholar 

  14. M. Srivastava, V.E. Selvi, V.K.W. Grips, K.S. Rajam, Corrosion resistance and microstructure of electrodeposited Nickel–Cobalt alloy coatings. Surf. Coat. Technol. 201, 3051–3060 (2006)

    Article  Google Scholar 

  15. F. Davar, Z. Fereshteh, M.S. Niasari, Nanoparticles Ni and NiO: synthesis, characterization and magnetic properties. J. Alloys Compd. 476, 797–801 (2009)

    Article  Google Scholar 

  16. M.S. Niasari, M.F. Khouzani, F. Davar, Bright blue pigment CoAl2O4 nanocrystals prepared by modified sol–gel method. J. Sol-Gel Sci. Technol. 52, 321–327 (2009)

    Article  Google Scholar 

  17. A. Karpuz, H. Kockar, M. Alper, O. Karaagac, M. Haciismailoglu, Electrodeposited Ni–Co films from electrolytes with different Co contents. Appl. Surf. Sci. 258, 4005–4010 (2012)

    Article  ADS  Google Scholar 

  18. N. Mira, M.S. Niasari, F. Davar, Preparation of ZnO nanoflowers and Zn glycerolate nanoplates using inorganic precursors via a convenient rout and application in dye sensitized solar cells. Chem. Eng. J. 181–182, 779–789 (2012)

    Article  Google Scholar 

  19. U. Sarac, M.C. Baykul, Characterization of nanocrystalline Ni–Cu thin films electrodeposited onto ITO coated glass substrates: effect of pretreatment current density. J. Mater. Sci. Mater. Electron. 24, 2777–2784 (2013)

    Article  Google Scholar 

  20. S.Z. Ajabshir, M.S. Niasari, Nanocrystalline Pr6O11: synthesis, characterization, optical and photocatalytic properties. New J. Chem. 39, 3948–3955 (2015)

    Article  Google Scholar 

  21. C. Li, S. He, H. Engelhardt, T. Zhan, W. Xuan, X. Li, Y. Zhong, Z. Ren, M. Rettenmayr, Alternating-magnetic-field induced enhancement of diffusivity in Ni–Cr alloys. Sci. Rep. 7, 18085 (2017)

    Article  ADS  Google Scholar 

  22. S. Gholamrezaei, M.G. Arani, M.S. Niasari, H. Moayedi, Multidisciplinary methods (co-precipitation, ultrasonic, microwave, reflux and hydrothermal) for synthesis and characterization of CaMn3O6 nanostructures and its photocatalytic water splitting performance. Int. J. Hydrog. Energy 44, 26373–26386 (2019)

    Article  Google Scholar 

  23. F. Alijani, M. Reihanian, Kh Gheisari, Study on phase formation in magnetic FeCoNiMnV high entropy alloy produced by mechanical alloying. J. Alloys Compd. 773, 623–630 (2019)

    Article  Google Scholar 

  24. M.H. Khorasanizadeh, M.G. Arani, R. Monsef, M.S. Niasari, H. Moayedi, Ultrasound-accelerated synthesis of uniform DyVO4 nanoparticles as high activity visible-light-driven photocatalyst. Ultrason. Sonochem. 59, 104719 (2019)

    Article  Google Scholar 

  25. R. Oriňáková, A. Turoňá, D. Kladeková, M. Gálová, R.M. Smith, Recent developments in the electrodeposition of nickel and some nickel-based alloys. J. Appl. Electrochem. 36, 957–972 (2006)

    Article  Google Scholar 

  26. I. Bakonyi, L. Péter, Electrodeposited multilayer films with giant magnetoresistance (GMR): progress and problems. Progr. Mater. Sci. 55, 107–245 (2010)

    Article  Google Scholar 

  27. V. Torabinejad, M. Aliofkhazraei, S. Assareh, M.H. Allahyarzadeh, A. Sabour Rouhaghdam, Electrodeposition of Ni–Fe alloys, composites, and nano coatings—a review. J. Alloys Compd. 691, 841–859 (2017)

    Article  Google Scholar 

  28. I. Gurrappa, L. Binder, Electrodeposition of nanostructured coatings and their characterization—a review. Sci. Technol. Adv. Mater. 9, 043001 (2008)

    Article  Google Scholar 

  29. A. Karimzadeh, M. Aliofkhazraei, F.C. Walsh, A review of electrodeposited Ni–Co alloy and composite coatings: microstructure, properties and applications. Surf. Coat. Technol. 372, 463–498 (2019)

    Article  Google Scholar 

  30. U. Sarac, M.C. Baykul, Morphological and microstructural properties of two-phase Ni–Cu films electrodeposited at different electrolyte temperatures. J. Alloys Compd. 552, 195–201 (2013)

    Article  Google Scholar 

  31. U. Sarac, M.C. Baykul, Properties of electrodeposited Fe–Cu films grown on ITO coated glass substrates at different electrolyte temperatures. J. Mater. Sci. Mater. Electron. 24, 952–957 (2013)

    Article  Google Scholar 

  32. U. Sarac, M.C. Baykul, Comparative studies of morphological and microstructural properties of electrodeposited nanocrystalline two-phase Co–Cu thin films prepared at low and high electrolyte temperatures. Dig. J. Nanomater. Biostruct. 9, 1179–1185 (2014)

    Google Scholar 

  33. Y.F. Yang, Z.H. Wen, Q.G. Li, Electrodeposition of Ni–Co alloy films onto titanium substrate. Rare Met. 33, 442–447 (2014)

    Article  Google Scholar 

  34. A. Bai, C.C. Hu, Effects of electroplating variables on the composition and morphology of nickel/cobalt deposits plated through means of cyclic voltammetry. Electrochim. Acta 47, 3447–3456 (2002)

    Article  Google Scholar 

  35. C.K. Chung, R.X. Zhou, W.T. Chang, The anomalous behavior and properties of Ni–Co films codeposited in the sulfamate–chloride electrolyte. Microsyst. Technol. 14, 1279–1284 (2008)

    Article  Google Scholar 

  36. O. Ergeneman, K.M. Sivaraman, S. Páne, E. Pellicer, A. Teleki, A.M. Hirt, M.D. Baró, B.J. Nelson, Morphology, structure and magnetic properties of cobalt–nickel films obtained from acidic electrolytes containing glycine. Electrochim. Acta 56, 1399–1408 (2011)

    Article  Google Scholar 

  37. U. Sarac, M.C. Baykul, Y. Uguz, The influence of applied current density on microstructural, magnetic, and morphological properties of electrodeposited nanocrystalline Ni–Co thin films. J. Supercond. Nov. Magn. 28, 1041–1045 (2015)

    Article  Google Scholar 

  38. U. Sarac, M.C. Baykul, Y. Uguz, differences observed in the phase structure, grain size-shape, and coercivity field of electrochemically deposited Ni–Co thin films with different co contents. J. Supercond. Nov. Magn. 28, 3105–3110 (2015)

    Article  Google Scholar 

  39. D. Li, A. Levesque, A. Franczak, Q. Wang, J. He, J.P. Chopart, Evolution of morphology in electrodeposited nanocrystalline Co–Ni films by in-situ high magnetic field application. Talanta 110, 66–70 (2013)

    Article  Google Scholar 

  40. N. Tsyntsaru, H. Cesiulis, E. Pellicer, J.P. Celis, J. Sort, Structural, magnetic, and mechanical properties of electrodeposited cobalt–tungsten alloys: Intrinsic and extrinsic interdependencies. Electrochim. Acta 104, 94–103 (2013)

    Article  Google Scholar 

  41. S. Vilain, J. Ebothe, M. Troyon, Surface roughness and composition effects on the magnetic properties of electrodeposited Ni-Co alloys. J. Magn. Magn. Mater. 157–158, 274–275 (1996)

    Article  ADS  Google Scholar 

  42. S. Armyanov, S. Vitkova, O. Blajiev, Internal stress and magnetic properties of electrodeposited amorphous Fe–P alloys. J. Appl. Electrochem. 27, 185–191 (1997)

    Article  Google Scholar 

  43. I. Horcas, R. Fernández, J.M. Gómez-Rodrίguez, J. Colchero, J. Gómez-Herrero, A.M. Baro, WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007)

    Article  ADS  Google Scholar 

  44. Roughness Parameters, Image Metrology A/S. Available from world wide web: https://www.imagemet.com/WebHelp/spip.htm#roughness_parameters.htm.

  45. A. Brenner, Electrodeposition of Alloys Principles and Practice (Academic Press, New York, 1963)

    Google Scholar 

  46. L. Tian, J. Xu, C. Qiang, The electrodeposition behaviors and magnetic properties of Ni–Co films. Appl. Surf. Sci. 257, 4689–4694 (2011)

    Article  ADS  Google Scholar 

  47. J. Wang, W. Lei, Y. Deng, Z. Xue, H. Qian, W. Liu, X. Li, Effect of current density on microstructure and corrosion resistance of Ni graphene oxide composite coating electrodeposited under supercritical carbon dioxide. Surf. Coat. Technol. 358, 765–774 (2019)

    Article  Google Scholar 

  48. A.M. Rashidi, A. Amadeh, The effect of saccharin addition and bath temperature on the grain size of nanocrystalline nickel coatings. Surf. Coat. Technol. 204, 353–358 (2009)

    Article  Google Scholar 

  49. A.M. Rashidi, A. Amadeh, Effect of electroplating parameters on microstructure of nanocrystalline nickel coatings. J. Mater. Sci. Technol. 26, 82–86 (2010)

    Article  Google Scholar 

  50. V.C. Nguyen, C.Y. Lee, L. Chang, F.J. Chen, C.S. Lin, The relationship between nano crystallite structure and internal stress in Ni coatings electrodeposited by watts bath electrolyte mixed with supercritical CO2. J. Electrochem. Soc. 159, D393–D399 (2012)

    Article  Google Scholar 

  51. E. Budevski, G. Staikov, W.J. Lorenz, Electrocrystallization Nucleation and growth phenomena. Electrochim. Acta 45, 2559–2574 (2000)

    Article  Google Scholar 

  52. H. Natter, R. Hempelmann, Tailor-made nanomaterials designed by electrochemical methods. Electrochim. Acta 49, 51–61 (2003)

    Article  Google Scholar 

  53. W.H. Li, X.Y. Zhou, Z. Xu, M.J. Yan, Effect of bath temperature on nanocrystalline Ni–polytetrafluoroethylene composite coatings prepared by brush electroplating. Surf. Eng. 25, 353–360 (2009)

    Article  Google Scholar 

  54. L. Feng, Y. Yue-Ren, Y.H. Zhang, S. Wang, L. Li, Direct correlations among the grain size, texture, and ındentation behavior of nanocrystalline nickel coatings. Metals 9, 1–17 (2019)

    Google Scholar 

  55. R. Sen, S. Das, K. Das, The effect of bath temperature on the crystallite size and microstructure of Ni–CeO2 nanocomposite coating. Mater. Charact. 62, 257–262 (2011)

    Article  Google Scholar 

  56. L.D. Rafailović, D.M. Minić, Deposition and characterisation of nanostructured nickel–cobalt alloys. Hem. ind. 63(5a), 557–569 (2009)

    Google Scholar 

  57. E. Pellicer, S. Pané, K.M. Sivaraman, O. Ergeneman, S. Suriñach, M.D. Baró, B.J. Nelson, J. Sort, Effects of the anion in glycine-containing electrolytes on the mechanical properties of electrodeposited Co–Ni films. Mater. Chem. Phys. 130, 1380–1386 (2011)

    Article  Google Scholar 

  58. L.D. Rafailović, D.M. Minić, H.P. Karnthaler, J. Wosic, T. Trišović, G.E. Nauer, Study of dendritic growth of Ni–Co alloys electrodeposited on Cu substrates. J. Electrochem. Soc. 157(5), D295–D301 (2010)

    Article  Google Scholar 

  59. R.P. Silva, S. Eugénio, T.M. Silva, M.J. Carmezim, M.F. Montemor, Fabrication of three-dimensional dendritic Ni–Co Films by electrodeposition on stainless steel substrates. J. Phys. Chem. C 116(42), 22425–22431 (2012)

    Article  Google Scholar 

  60. M. Mirak, A. Akbari, Microstructural characterization of electrodeposited and heat-treated Ni–B coatings. Surf. Coat. Technol. 349, 442–451 (2018)

    Article  Google Scholar 

  61. U. Sarac, M. Kaya, M.C. Baykul, A comparative study on microstructures, magnetic features and morphologies of ternary Fe–Co–Ni Alloy thin films electrochemically fabricated at different deposition potentials. J. Supercond. Nov. Magn. 32, 917–923 (2019)

    Article  Google Scholar 

  62. A.Y. Suh, A.A. Polycarpou, T.F. Conry, Detailed surface roughness characterization of engineering surfaces undergoing tribological testing leading to scuffing. Wear 255, 556–568 (2003)

    Article  Google Scholar 

  63. C. Trapalis, N. Todorova, M. Anastasescu, C. Anastasescu, M. Stoica, M. Gartner, M. Zaharescu, T. Stoica, Atomic force microscopy study of TiO2 sol–gel films thermally treated under NH3 atmosphere. Thin Solid Films 517, 6243–6247 (2009)

    Article  ADS  Google Scholar 

  64. R.M. Öksüzoğlu, U. Sarac, M. Yıldırım, H. Çınar, Characterization of microstructural and morphological properties in As-deposited Ta/NiFe/IrMn/CoFe/Ta multilayer system. J. Mater. Sci. Technol. 30, 359–364 (2014)

    Article  Google Scholar 

  65. R. Pereira, P.C. Camargo, A.J.A. de Oliveira, E.C. Pereira, Modulation of the morphology, microstructural and magnetic properties on electrodeposited NiFeCu alloys. Surf. Coat. Technol. 311, 274–281 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Scientific Research Projects Commission of Eskişehir Osmangazi University under the project number 200819039. The authors thank Çağdaş Denizli for his valuable technical assistance during AFM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umut Sarac.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarac, U., Kaya, M. & Baykul, M.C. Bath temperature-dependent structural properties, coercive force, surface morphology and surface texture of electrochemically grown nanostructured Ni–Co/ITO thin films. Appl. Phys. A 126, 239 (2020). https://doi.org/10.1007/s00339-020-3423-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3423-x

Keywords

Navigation