Skip to main content

Advertisement

Log in

Development of bioabsorbable zinc–magnesium alloy wire and validation of its application to urinary tract surgeries

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

Metallic medical devices are typically constructed from non-bioabsorbable metals that remains in the body and causes considerable complications. Particularly in the urinary tract, calculus, intractable infection, and misdiagnosis as calculus are often caused by non-bioabsorbable metals. Here, we developed a zinc–magnesium alloy as a new bioabsorbable metal and sought to evaluate the bioabsorbable behavior of zinc and zinc–magnesium alloy in a rat bladder implantation model.

Methods

We prepared zinc–magnesium alloy wires with various proportions of magnesium and investigated the strength, shape retention, formability, and absorbability of these novel materials. Then, we implanted zinc and zinc–magnesium alloy rings formed by the wires into rat bladder. Rats were euthanized at the end of the observation period, and the rings were removed for volume evaluation. Extracted bladder tissues were subjected to histological analysis.

Results

The strength of the zinc wire was enhanced by more than fourfold upon the addition of magnesium, without loss of ductility. Linear reduction of ring volume in urine was observed based on the concentration of magnesium within the ring. Nearly all rings were covered with a thin layer of calculus. Histological findings of the transected urinary bladder tissues did not differ among groups.

Conclusions

Zinc–magnesium alloy is a promising candidate for use as a bioabsorbable medical device in the urinary tract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

eferences

  1. Westwood TD, Capozzi P, Martin DF, Sukumar SA (2014) Absorbable laparoscopic ligating clips: impact on postoperative CT imaging. Clin Radiol 69:783–785. https://doi.org/10.1016/j.crad.2014.02.009

    Article  CAS  PubMed  Google Scholar 

  2. Shin YS, Doo AR, Cha JS et al (2012) Floating Hem-o-Lok clips in the bladder without stone formation after robot-assisted laparoscopic radical prostatectomy. Korean J Urol 53:60–62. https://doi.org/10.4111/kju.2012.53.1.60

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yi JS, Kwak C, Kim HH, Ku JH (2010) Surgical clip-related complications after radical prostatectomy. Korean J Urol 51:683–687. https://doi.org/10.4111/kju.2010.51.10.683

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bientinesi R, Sacco E, Racioppi M et al (2015) Endourethral migration of a Hem-o-Lok clip after robot-assisted laparoscopic radical prostatectomy. Urol J 82:242–244. https://doi.org/10.5301/uro.5000106

    Article  Google Scholar 

  5. Bayles AC, Bhatti A, Sakthivel A et al (2015) “Clip-strasse”: a novel complication following partial nephrectomy. Scand J Urol 49:424–425. https://doi.org/10.3109/21681805.2015.1040450

    Article  PubMed  Google Scholar 

  6. Seung HC, Sung BK, Jae YC et al (2011) Metal clip migration with stone after radical retropubic prostatectomy. Korean J Urol Oncol 9:29–31

    Google Scholar 

  7. Kadekawa K, Hossain RZ, Nishijima S et al (2009) Migration of a metal clip into the urinary bladder. Urol Res 37:117–119. https://doi.org/10.1007/s00240-009-0173-9

    Article  PubMed  Google Scholar 

  8. Allaparthi S (2010) Rare case of Hem-o-Lok clip migration after robotic radical prostatectomy. Internet J Urol 6:6–9. https://doi.org/10.5580/2026

    Article  Google Scholar 

  9. Yoshida T, Fukumoto T, Urade T et al (2017) Development of a new biodegradable operative clip made of a magnesium alloy: evaluation of its safety and tolerability for canine cholecystectomy. Surgery 161:1553–1560. https://doi.org/10.1016/j.surg.2016.12.023

    Article  PubMed  Google Scholar 

  10. Ikeo N, Nakamura R, Naka K et al (2016) Fabrication of a magnesium alloy with excellent ductility for biodegradable clips. Acta Biomater 29:468–476. https://doi.org/10.1016/j.actbio.2015.10.023

    Article  CAS  PubMed  Google Scholar 

  11. Julian TB, Ravitch MM (1986) Closure of the urinary bladder with stainless steel and absorbable staples. Ann Surg 204:186–192. https://doi.org/10.1097/00000658-198608000-00014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cecchi M, Sepich CA, Pagni G, Fiorentini L (1997) Bladder replacement with modified studer pouch using absorbable staples. Int Urol Nephrol 29:39–44. https://doi.org/10.1007/BF02551415

    Article  CAS  PubMed  Google Scholar 

  13. Vojtěch D, Kubásek J, Šerák J, Novák P (2011) Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater 7:3515–3522. https://doi.org/10.1016/j.actbio.2011.05.008

    Article  CAS  PubMed  Google Scholar 

  14. Gong H, Wang K, Strich R, Zhou JG (2015) In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn–Mg alloy. J Biomed Mater Res Part B Appl Biomater 103:1632–1640. https://doi.org/10.1002/jbm.b.33341

    Article  CAS  PubMed Central  Google Scholar 

  15. Kubásek J, Vojtěch D, Jablonská E et al (2016) Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn–Mg alloys. Mater Sci Eng C 58:24–35. https://doi.org/10.1016/j.msec.2015.08.015

    Article  CAS  Google Scholar 

  16. Bowen PK, Drelich J, Goldman J (2013) Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater 25:2577–2582. https://doi.org/10.1002/adma.201300226

    Article  CAS  PubMed  Google Scholar 

  17. Witte F (2010) The history of biodegradable magnesium implants: a review. Acta Biomater 6:1680–1692. https://doi.org/10.1016/j.actbio.2010.02.028

    Article  CAS  PubMed  Google Scholar 

  18. Montie JE, Pontes JE, Powell IJ (1996) A comparison of the W-stapled ileal reservoir with hand-sewn reservoirs for orthotopic bladder replacement. Urology 47:476–481. https://doi.org/10.1016/S0090-4295(99)80480-4

    Article  CAS  PubMed  Google Scholar 

  19. Kirsch AJ, Hensle TW, Olsson CA (1996) Absorbable stapling techniques in continent urinary diversion. World J Urol 14:117–121. https://doi.org/10.1007/BF00182569

    Article  CAS  PubMed  Google Scholar 

  20. Bonney WW, Robinson RA (1990) Absorbable staples in continentileal urinary pouch. Urology 35:57–62. https://doi.org/10.1016/0090-4295(90)80014-E

    Article  CAS  PubMed  Google Scholar 

  21. Cemil Uygur M, Özgür Tan M, Altuǧ U et al (2000) Clinical, urodynamic and endoscopic characteristics of the Stanford pouch ileal neobladder constructed with absorbable staples. Int J Urol 7:440–446. https://doi.org/10.1046/j.1442-2042.2000.00227.x

    Article  Google Scholar 

  22. Barbalat Y, Morales D, Weiss RE (2012) Contemporary use of titanium staples for orthotopic urinary diversion. Urology 80:1176–1180. https://doi.org/10.1016/J.UROLOGY.2012.08.034

    Article  PubMed  Google Scholar 

  23. Muto G, Collura D, Simone G et al (2016) Stapled orthotopic ileal neobladder after radical cystectomy for bladder cancer: functional results and complications over a 20-year period. Eur J Surg Oncol 42:412–418. https://doi.org/10.1016/J.EJSO.2015.11.010

    Article  CAS  PubMed  Google Scholar 

  24. Fontana D, Bellina M, Fasolis G et al (2004) Y-neobladder: an easy, fast, and reliable procedure. Urology 63:699–703. https://doi.org/10.1016/J.UROLOGY.2003.11.015

    Article  CAS  PubMed  Google Scholar 

  25. Porena M, Mearini L, Zucchi A et al (2012) Perugia ileal neobladder: functional results and complications. World J Urol 30:747–752. https://doi.org/10.1007/s00345-012-0985-z

    Article  PubMed  Google Scholar 

  26. Zhang S, Zheng Y, Zhang L et al (2016) In vitro and in vivo corrosion and histocompatibility of pure Mg and a Mg-6Zn alloy as urinary implants in rat model. Mater Sci Eng C 68:414–422. https://doi.org/10.1016/j.msec.2016.06.017

    Article  CAS  Google Scholar 

  27. Tapiero H, Tew KD (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 57:399–411. https://doi.org/10.1016/S0753-3322(03)00081-7

    Article  CAS  PubMed  Google Scholar 

  28. Vermeulen CW, Grove WJ, Goetz R et al (1950) Experimental urolithiasis. I. Development of calculi upon foreign bodies surgically introduced into bladders of rats. J Urol 64:541–548. https://doi.org/10.1016/S0022-5347(17)68674-9

    Article  CAS  PubMed  Google Scholar 

  29. Suriano F, Daneshmand S, Buscarini M (2013) Use of nonabsorbable staples for urinary diversion: a step in the wrong direction. Urol Int 90:125–129. https://doi.org/10.1159/000339377

    Article  PubMed  Google Scholar 

  30. Tannehill-Gregg SH, Dominick MA, Reisinger AJ et al (2009) Strain-related differences in urine composition of male rats of potential relevance to urolithiasis. Toxicol Pathol 37:293–305. https://doi.org/10.1177/0192623309332990

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Institute for Experimental Animals, Kobe University Graduate School of Medicine for breeding rats and providing the necessary laboratory facilities for this work.

Author information

Authors and Affiliations

Authors

Contributions

YO: Data collection, data analysis, manuscript writing; NH: project development, manuscript writing; TH: data collection, data analysis, metal processing; TN: data collection, data analysis, metal processing; NI: project development, data collection, data analysis; JF: data collection; KH: data collection; YN: data collection; TF: project development; TM: project development, manuscript writing; MF: project development.

Corresponding author

Correspondence to Nobuyuki Hinata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamura, Y., Hinata, N., Hoshiba, T. et al. Development of bioabsorbable zinc–magnesium alloy wire and validation of its application to urinary tract surgeries. World J Urol 39, 201–208 (2021). https://doi.org/10.1007/s00345-020-03138-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-020-03138-7

Keywords

Navigation