Skip to main content
Log in

“Nanospace engineering” by the growth of nano metal-organic framework on dendritic fibrous nanosilica (DFNS) and DFNS/gold hybrids

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Advanced hybrid nanomaterials (nanohybrids) with unique tailored morphologies and compositions have been used for the target-oriented catalysts due to the structural or supportive properties of each moiety and the synergistic properties of the individual components. The rational design and development of nanohybrids by integrating highly porous silica into a nano metal-organic framework (NMOF) are expected to enable unique nanospace engineering in the resulting systems to optimize their utility in the target areas. Herein, we report the design and fabrication of advanced nanohybrids composed of dendritic fibrous nanosilica (DFNS) and DFNS/gold (DFNS/Au) hybrids as the core and zinc-based NMOF (Zn-NMOF) as the shell (DFNS@Zn-NMOF) through a solution-based approach. The combined fibrous morphology of DFNS and micropores of NMOF can be directly employed for nanospace engineering in the resulting multi-compositional and hierarchical systems in a controllable manner. The DFNS/Au dots@Zn-NMOF nanohybrid shows improved catalytic performance in the Knoevenagel condensation reaction, attributed mainly to the cooperative effect stemming from the suitably organized configurations of each component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wight, A. P.; Davis, M. E. Design and preparation of organic-inorganic hybrid catalysts. Chem. Rev.2002, 102, 3589–3614.

    CAS  Google Scholar 

  2. Ghosh Chaudhuri, R.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev.2012, 112, 2373–2433.

    CAS  Google Scholar 

  3. Shi, J. L. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem. Rev.2013, 113, 2139–2181.

    CAS  Google Scholar 

  4. Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev.2007, 107, 2891–2959.

    CAS  Google Scholar 

  5. Shylesh, S.; Schünemann, V.; Thiel, W. R. Magnetically separable nanocatalysts: Bridges between homogeneous and heterogeneous catalysis. Angew. Chem., Int. Ed.2010, 49, 3428–3459.

    CAS  Google Scholar 

  6. Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem.2018, 2, 65–81.

    CAS  Google Scholar 

  7. Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev.2019, 120, 526–622.

    Google Scholar 

  8. Zanon, A.; Verpoort, F. Metals@ZIFs: Catalytic applications and size selective catalysis. Coord. Chem. Rev.2017, 353, 201–222.

    CAS  Google Scholar 

  9. Xu, C. P.; Fang, R. Q.; Luque, R.; Chen, L. Y.; Li, Y. W. Functional metal-organic frameworks for catalytic applications. Coord. Chem. Rev.2019, 388, 268–292.

    CAS  Google Scholar 

  10. Moon, Y.; Mai, H. D.; Yoo, H. Platinum overgrowth on gold multipod nanoparticles: Investigation of synergistic catalytic effects in a bimetallic nanosystem. ChemNanoMat2017, 3, 196–203.

    CAS  Google Scholar 

  11. Carné, A.; Carbonell, C.; Imaz, I.; Maspoch, D. Nanoscale metal-organic materials. Chem. Soc. Rev.2011, 40, 291–305.

    Google Scholar 

  12. Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y. B.; Kang, J. K.; Yaghi, O. M. Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano2014, 8, 7451–7457.

    CAS  Google Scholar 

  13. Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev.2012, 112, 933–969.

    CAS  Google Scholar 

  14. Liu, B. T.; Vellingiri, K.; Jo, S. H.; Kumar, P.; Ok, Y. S.; Kim, K. H. Recent advances in controlled modification of the size and morphology of metal-organic frameworks. Nano Res.2018, 11, 4441–4467.

    CAS  Google Scholar 

  15. Wang, S. Z.; McGuirk, C. M.; d’Aquino, A.; Mason, J. A.; Mirkin, C. A. Metal-organic framework nanoparticles. Adv. Mater.2018, 30, 1800202.

    Google Scholar 

  16. Zhan, G. W.; Zeng, H. C. Integrated nanocatalysts with mesoporous silica/silicate and microporous MOF materials. Coord. Chem. Rev.2016, 320–321, 181–192.

    Google Scholar 

  17. Kuyuldar, S.; Genna, D. T.; Burda, C. On the potential for nanoscale metal-organic frameworks for energy applications. J. Mater. Chem. A2019, 7, 21545–21576.

    CAS  Google Scholar 

  18. Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev.2017, 46, 4774–4808.

    CAS  Google Scholar 

  19. Zhu, Q. L.; Xu, Q. Metal-organic framework composites. Chem. Soc. Rev.2014, 43, 5468–5512.

    CAS  Google Scholar 

  20. Kuo, C. H.; Tang, Y.; Chou, L. Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z. P.; Tsung, C. K. Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. J. Am. Chem. Soc.2012, 134, 14345–14348.

    CAS  Google Scholar 

  21. Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem.2012, 4, 310–316.

    CAS  Google Scholar 

  22. Kirchon, A.; Feng, L.; Drake, H. F.; Joseph, E. A.; Zhou, H. C. From fundamentals to applications: A toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev.2018, 47, 8611–8638.

    CAS  Google Scholar 

  23. Yang, Q.; Liu, W. X.; Wang, B. Q.; Zhang, W. N.; Zeng, X. Q.; Zhang, C.; Qin, Y. J.; Sun, X. M.; Wu, T. P.; Liu, J. F. et al. Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nat. Commun.2017, 8, 14429.

    CAS  Google Scholar 

  24. Li, B.; Wen, H. M.; Cui, Y. J.; Zhou, W.; Qian, G. D.; Chen, B. L. Emerging multifunctional metal-organic framework materials. Adv. Mater.2016, 28, 8819–8860.

    CAS  Google Scholar 

  25. Jiang, J. C.; Yaghi, O. M. Brønsted acidity in metal-organic frameworks. Chem. Rev.2015, 115, 6966–6997.

    CAS  Google Scholar 

  26. Chen, L. Y.; Luque, R.; Li, Y. W. Controllable design of tunable nanostructures inside metal-organic frameworks. Chem. Soc. Rev.2017, 46, 4614–4630.

    CAS  Google Scholar 

  27. Li, G. D.; Zhao, S. L.; Zhang, Y.; Tang, Z. Y. Metal-organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: Recent progress and perspectives. Adv. Mater.2018, 30, 1800702.

    Google Scholar 

  28. Dhakshinamoorthy, A.; Garcia, H. Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chem. Soc. Rev.2012, 41, 5262–5284.

    CAS  Google Scholar 

  29. Li, B.; Ma, J. G.; Cheng, P. Integration of metal nanoparticles into metal-organic frameworks for composite catalysts: Design and synthetic strategy. Small2019, 15, 1804849.

    Google Scholar 

  30. Wang, P.; Zhao, J.; Li, X. B.; Yang, Y.; Yang, Q. H.; Li, C. Assembly of ZIF nanostructures around free Pt nanoparticles: Efficient size-selective catalysts for hydrogenation of alkenes under mild conditions. Chem. Commun.2013, 49, 3330–3332.

    CAS  Google Scholar 

  31. Stephenson, C. J.; Hupp, J. T.; Farha, O. K. Postassembly transformation of a catalytically active composite material, Pt@ZIF-8, via solvent-assisted linker exchange. Inorg. Chem.2016, 55, 1361–1363.

    CAS  Google Scholar 

  32. Guo, Z. Y.; Xiao, C. X.; Maligal-Ganesh, R. V.; Zhou, L.; Goh, T. W.; Li, X. L.; Tesfagaber, D.; Thiel, A.; Huang, W. Y. Pt nanoclusters confined within metal-organic framework cavities for chemoselective cinnamaldehyde hydrogenation. ACS Catal.2014, 4, 1340–1348.

    CAS  Google Scholar 

  33. Li, D. D.; Yu, S. H.; Jiang, H. L. From UV to near-infrared light-responsive metal-organic framework composites: Plasmon and upconversion enhanced photocatalysis. Adv. Mater.2018, 30, 1707377.

    Google Scholar 

  34. Na, K.; Choi, K. M.; Yaghi, O. M.; Somorjai, G. A. Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. Nano Lett.2014, 14, 5979–5983.

    Google Scholar 

  35. Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature2016, 539, 76–80.

    CAS  Google Scholar 

  36. Ke, F.; Zhu, J. F.; Qiu, L. G.; Jiang, X. Controlled synthesis of novel Au@MIL-100(Fe) core-shell nanoparticles with enhanced catalytic performance. Chem. Commun.2013, 49, 1267–1269.

    CAS  Google Scholar 

  37. Yuan, B. Z.; Pan, Y. Y.; Li, Y. W.; Yin, B. L.; Jiang, H. F. A highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media. Angew. Chem., Int. Ed.2010, 49, 4054–4058.

    CAS  Google Scholar 

  38. Hermannsdörfer, J.; Friedrich, M.; Miyajima, N.; Albuquerque, R. Q.; Kümmel, S.; Kempe, R. Ni/Pd@MIL-101: Synergistic catalysis with cavity-conform Ni/Pd nanoparticles. Angew. Chem., Int. Ed.2012, 51, 11473–11477.

    Google Scholar 

  39. Khajavi, H.; Stil, H. A.; Kuipers, H. P. C. E.; Gascon, J.; Kapteijn, F. Shape and transition state selective hydrogenations using egg-shell Pt-MIL-101(Cr) catalyst. ACS Catal.2013, 3, 2617–2626.

    CAS  Google Scholar 

  40. Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater.2018, 30, 1705112.

    Google Scholar 

  41. Zhang, W. N.; Zheng, B.; Shi, W. X.; Chen, X. Y.; Xu, Z. L.; Li, S. Z.; Chi, Y. R.; Yang, Y. H.; Lu, J.; Huang, W. et al. Site-selective catalysis of a multifunctional linear molecule: The steric hindrance of metal-organic framework channels. Adv. Mater.2018, 30, 1800643.

    Google Scholar 

  42. Liu, Y. L.; Tang, Z. Y. Multifunctional nanoparticle@MOF core-shell nanostructures. Adv. Mater.2013, 25, 5819–5825.

    CAS  Google Scholar 

  43. Falcaro, P.; Ricco, R.; Yazdi, A.; Imaz, I.; Furukawa, S.; Maspoch, D.; Ameloot, R.; Evans, J. D.; Doonan, C. J. Application of metal and metal oxide nanoparticles@MOFs. Coord. Chem. Rev.2016, 307, 237–254.

    CAS  Google Scholar 

  44. Zhan, W. W.; Kuang, Q.; Zhou, J. Z.; Kong, X. J.; Xie, Z. X.; Zheng, L. S. Semiconductor@metal-organic framework core-shell heterostructures: A case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response. J. Am. Chem. Soc.2013, 135, 1926–1933.

    CAS  Google Scholar 

  45. Li, Z.; Zeng, H. C. Armored MOFs: Enforcing soft microporous MOF nanocrystals with hard mesoporous silica. J. Am. Chem. Soc.2014, 136, 5631–5639.

    CAS  Google Scholar 

  46. Jo, C.; Lee, H. J.; Oh, M. One-pot synthesis of silica@coordination polymer core-shell microspheres with controlled shell thickness. Adv. Mater.2011, 23, 1716–1719.

    CAS  Google Scholar 

  47. Polshettiwar, V.; Cha, D.; Zhang, X. X.; Basset, J. M. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology. Angew. Chem., Int. Ed.2010, 49, 9652–9656.

    CAS  Google Scholar 

  48. Maity, A.; Polshettiwar, V. Dendritic fibrous nanosilica for catalysis, energy harvesting, carbon dioxide mitigation, drug delivery, and sensing. ChemSusChem2017, 10, 3866–3913.

    CAS  Google Scholar 

  49. Wang, Y.; Song, H.; Yang, Y. N.; Liu, Y.; Tang, J.; Yu, C. Z. Kinetically controlled dendritic mesoporous silica nanoparticles: From dahlia- to pomegranate-like structures by micelle filling. Chem. Mater.2018, 30, 5770–5776.

    CAS  Google Scholar 

  50. Byoun, W.; Jung, S.; Tran, N. M.; Yoo, H. Synthesis and application of dendritic fibrous nanosilica/gold hybrid nanomaterials. ChemistryOpen2018, 7, 349–355.

    CAS  Google Scholar 

  51. Fihri, A.; Cha, D.; Bouhrara, M.; Almana, N.; Polshettiwar, V. Fibrous nano-silica (KCC-1)-supported palladium catalyst: Suzuki coupling reactions under sustainable conditions. ChemSusChem2012, 5, 85–89.

    CAS  Google Scholar 

  52. Le, X. D.; Dong, Z. P.; Li, X. L.; Zhang, W.; Le, M. D.; Ma, J. T. Fibrous nano-silica supported palladium nanoparticles: An efficient catalyst for the reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol under mild conditions. Catal. Commun.2015, 59, 21–25.

    CAS  Google Scholar 

  53. Gautam, P.; Dhiman, M.; Polshettiwar, V.; Bhanage, B. M. KCC-1 supported palladium nanoparticles as an efficient and sustainable nanocatalyst for carbonylative Suzuki-Miyaura cross-coupling. Green Chem.2016, 18, 5890–5899.

    CAS  Google Scholar 

  54. Dhiman, M.; Polshettiwar, V. Ultrasmall nanoparticles and pseudosingle atoms of platinum supported on fibrous nanosilica (KCC-1/Pt): Engineering selectivity of hydrogenation reactions. J. Mater. Chem. A2016, 4, 12416–12424.

    CAS  Google Scholar 

  55. Pak, J.; Yoo, H. Facile synthesis of spherical nanoparticles with a silica shell and multiple Au nanodots as the core. J. Mater. Chem. A2013, 1, 5408–5413.

    CAS  Google Scholar 

  56. Choi, S.; Moon, Y.; Yoo, H. Finely tunable fabrication and catalytic activity of gold multipod nanoparticles. J. Colloid Interface Sci.2016, 469, 269–276.

    CAS  Google Scholar 

  57. Maity, A.; Belgamwar, R.; Polshettiwar, V. Facile synthesis to tune size, textural properties and fiber density of dendritic fibrous nanosilica for applications in catalysis and CO2 capture. Nat. Protoc.2019, 14, 2177–2204.

    CAS  Google Scholar 

  58. Wang, Y. B.; Du, X.; Liu, Z.; Shi, S. H.; Lv, H. M. Dendritic fibrous nano-particles (DFNPs): Rising stars of mesoporous materials. J. Mater. Chem. A2019, 7, 5111–5152.

    CAS  Google Scholar 

  59. Bayal, N.; Singh, B.; Singh, R.; Polshettiwar, V. Size and fiber density controlled synthesis of fibrous nanosilica spheres (KCC-1). Sci. Rep.2016, 6, 24888.

    CAS  Google Scholar 

  60. Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Pd nanocubes@ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem., Int. Ed.2016, 55, 3685–3689.

    CAS  Google Scholar 

  61. Tran, N. M.; Mai, H. D.; Yoo, H. Fabrication of zinc-based coordination polymer nanocubes and post-modification through copper decoration. Nano Res.2018, 11, 5890–5901.

    CAS  Google Scholar 

  62. Tran, U. P. N.; Le, K. K. A.; Phan, N. T. S. Expanding applications of metal-organic frameworks: Zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the Knoevenagel reaction. ACS Catal.2011, 1, 120–127.

    CAS  Google Scholar 

  63. Lei, Z. W.; Deng, Y. H.; Wang, C. Y. Multiphase surface growth of hydrophobic ZIF-8 on melamine sponge for excellent oil/water separation and effective catalysis in a Knoevenagel reaction. J. Mater. Chem. A2018, 6, 3258–3263.

    CAS  Google Scholar 

  64. Srivastava, S.; Kumar, V.; Gupta, R. A carboxylate-rich metalloligand and its heterometallic coordination polymers: Syntheses, structures, topologies, and heterogeneous catalysis. Cryst. Growth Des.2016, 16, 2874–2886.

    CAS  Google Scholar 

  65. Kumar, G.; Gupta, R. Cobalt complexes appended with p- and m-carboxylates: Two unique {Co3+-Cd2+} networks and their regioselective and size-selective heterogeneous catalysis. Inorg. Chem.2012, 51, 5497–5499.

    CAS  Google Scholar 

  66. Kumar, G.; Hussain, F.; Gupta, R. Carbon-sulphur cross coupling reactions catalyzed by nickel-based coordination polymers based on metalloligands. Dalton Trans.2017, 46, 15023–15031.

    CAS  Google Scholar 

  67. Sorribas, S.; Zornoza, B.; Serra-Crespo, P.; Gascon, J.; Kapteijn, F.; Téllez, C.; Coronas, J. Synthesis and gas adsorption properties of mesoporous silica-NH2-MIL-53(Al) core-shell spheres. Microp. Mesop. Mater.2016, 225, 116–121.

    CAS  Google Scholar 

  68. Sorribas, S.; Zornoza, B.; Téllez, C.; Coronas, J. Ordered mesoporous silica-(ZIF-8) core-shell spheres. Chem. Commun.2012, 48, 9388–9390.

    CAS  Google Scholar 

  69. Ke, F.; Qiu, L. G.; Zhu, J. F. Fe3O4@MOF core-shell magnetic microspheres as excellent catalysts for the Claisen-Schmidt condensation reaction. Nanoscale2014, 6, 1596–1601.

    CAS  Google Scholar 

  70. Wang, K.; Ren, H. L.; Li, N.; Tan, X. Y.; Dang, F. Q. Ratiometric fluorescence sensor based on cholesterol oxidase-functionalized mesoporous silica nanoparticle@ZIF-8 core-shell nanocomposites for detection of cholesterol. Talanta2018, 188, 708–713.

    CAS  Google Scholar 

  71. Qu, Q. S.; Xuan, H.; Zhang, K. H.; Chen, X. M.; Ding, Y.; Feng, S. J.; Xu, Q. Core-shell silica particles with dendritic pore channels impregnated with zeolite imidazolate framework-8 for high performance liquid chromatography separation. J. Chromatogr. A2017, 1505, 63–68.

    CAS  Google Scholar 

  72. Vermoortele, F.; Bueken, B.; Le Bars, G.; van de Voorde, B.; Vandichel, M.; Houthoofd, K.; Vimont, A.; Daturi, M.; Waroquier, M.; van Speybroeck, V. et al. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: The unique case of UiO-66(Zr). J. Am. Chem. Soc.2013, 135, 11465–11468.

    CAS  Google Scholar 

  73. Zhang, P. F.; Xiao, Y.; Sun, H.; Dai, X. P.; Zhang, X.; Su, H. X.; Qin, Y. C.; Gao, D. W.; Jin, A. X.; Wang, H. et al. Microwave-assisted, Ni-induced fabrication of hollow ZIF-8 nanoframes for the Knoevenagel reaction. Cryst. Growth Des.2018, 18, 3841–3850.

    CAS  Google Scholar 

  74. Schmidbaur, H. Proof of concept for hydrogen bonding to gold, Au⋯H-X. Angew. Chem., Int. Ed.2019, 58, 5806–5809.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT, MSICT) (NRF-2015R1A4A1041631 and NRF-2016R1A2B4009281). This research was also supported by the research fund of Hanyang University (201900000002834).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyojong Yoo.

Electronic Supplementary Material

12274_2020_2693_MOESM1_ESM.pdf

“Nanospace engineering” by the growth of nano metal-organic framework on dendritic fibrous nanosilica (DFNS) and DFNS/gold hybrids

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, N.M., Jung, S. & Yoo, H. “Nanospace engineering” by the growth of nano metal-organic framework on dendritic fibrous nanosilica (DFNS) and DFNS/gold hybrids. Nano Res. 13, 775–784 (2020). https://doi.org/10.1007/s12274-020-2693-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2693-0

Keywords

Navigation