1932

Abstract

Most of Earth's terrestrial surface is made up of sloping landscapes. The lateral distribution of topsoil by erosion controls the availability, stock, and persistence of essential elements in the terrestrial ecosystem. Over the last two decades, the role of soil erosion in biogeochemical cycling of essential elements has gained considerable interest from the climate, global change, and biogeochemistry communities after soil erosion and terrestrial sedimentation were found to induce a previously unaccounted terrestrial sink for atmospheric carbon dioxide. More recent studies have highlighted the role of erosion in the persistence of organic matter in soil and in the biogeochemical cycling of elements beyond carbon Here we synthesize available knowledge and data on how erosion serves as a major driver of biogeochemical cycling of essential elements. We address implications of erosion-driven changes in biogeochemical cycles on the availability of essential elements for primary production, on the magnitude of elemental exports downstream, and on the exchange of greenhouse gases from the terrestrial ecosystem to the atmosphere. Furthermore, we explore fates of eroded material and how terrestrial mass movement events play major roles in modifying Earth's climate.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-082517-010018
2018-05-30
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/earth/46/1/annurev-earth-082517-010018.html?itemId=/content/journals/10.1146/annurev-earth-082517-010018&mimeType=html&fmt=ahah

Literature Cited

  1. Aandahl AR 1948. Characterization of slope positions and their influence on the total nitrogen content of a few virgin soils of western Iowa. Soil Soc. Am. J. 13:449–54
    [Google Scholar]
  2. Abney R, Berhe AA 2018. Erosional distribution of pyrogenic carbon: implications for persistence of pyrogenic carbon in the soil system. Biogeoscience Accepted
    [Google Scholar]
  3. Aciego SM, Riebe CS, Hart SC, Blakowski MA, Carey CJ et al. 2017. Dust outpaces bedrock in nutrient supply to montane forest ecosystems. Nat. Commun. 8:14800
    [Google Scholar]
  4. Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL 2015. Soil and human security in the 21st century. Science 348:647
    [Google Scholar]
  5. Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC et al. 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 9:53–60
    [Google Scholar]
  6. Bajracharya RM, Lal R, Kimble JM 2000. Erosion effects on carbon dioxide concentration and carbon flux from an Ohio Alfisol. Soil Sci. Soc. Am. J. 64:694–700
    [Google Scholar]
  7. Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A 2011. Freshwater methane emissions offset the continental carbon sink. Science 331:50
    [Google Scholar]
  8. Battin T, Luyssaert S, Kaplan L, Aufdenkampe A, Richter A, Tranvik L 2009. The boundless carbon cycle. Nat. Geosci. 2:598–600
    [Google Scholar]
  9. Benner R, Benitez-Nelson B, Kaiser K, Amon RMW 2004. Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean. Geophys. Res. Lett. 31:L05305
    [Google Scholar]
  10. Bennett EM, Schipanski ME 2012. The phosphorus cycle. Fundamentals of Ecosystem Science KC Weathers, DL Strayer, GE Likens 159–78 Amsterdam: Elsevier
    [Google Scholar]
  11. Berc J, Lawford R, Bruce J, Mearns L, Easterling D et al. 2003. Conservation implications of climate change: soil erosion and runoff from croplands Rep Soil Water Conserv. Soc. Ankeny, IA:
  12. Berhe AA 2012. Decomposition of organic substrates at eroding vs. depositional landform positions. Plant Soil 350:261–80
    [Google Scholar]
  13. Berhe AA 2013. Effect of litterbags on rate of organic substrate decomposition along soil depth and geomorphic gradients. J. Soils Sediments 13:629–40
    [Google Scholar]
  14. Berhe AA, Arnold C, Stacy E, Lever R, McCorkle E, Araya SN 2014. Soil erosion controls on biogeochemical cycling of carbon and nitrogen. Nat. Educ. Knowl. 5:2
    [Google Scholar]
  15. Berhe AA, Harden JW, Harte J, Torn M 2005. Soil degradation and global change: role of soil erosion and deposition in carbon sequestration Presented at Breslauer Symp., Univ. Calif. Int. Area Stud.
  16. Berhe AA, Harden JW, Torn MS, Harte J 2008. Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions. J. Geophys. Res. 113:G04039
    [Google Scholar]
  17. Berhe AA, Harden JW, Torn MS, Kleber M, Burton SD, Harte J 2012. Persistence of soil organic matter in eroding versus depositional landform positions. J. Geophysical Res. 117:G02019
    [Google Scholar]
  18. Berhe AA, Harte J, Harden JW, Torn MS 2007. The significance of erosion-induced terrestrial carbon sink. BioScience 57:337–46
    [Google Scholar]
  19. Berhe AA, Kleber M 2013. Erosion, deposition, and the persistence of soil organic matter: mechanistic considerations and problems with terminology. Earth Surf. Process. Landf. 38:908–12
    [Google Scholar]
  20. Berhe AA, Torn MS 2017. Erosional redistribution of topsoil controls soil nitrogen dynamics. Biogeochemistry 132:37–54
    [Google Scholar]
  21. Beusen AH, Bouwman AF, Van Beek LP, Mogollón JM, Middelburg JJ 2016. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences 13:2441
    [Google Scholar]
  22. Beyer L, Köbbemann C, Finnern J, Elsner D, Schluß W 1993. Colluvisols under cultivation in Schleswig-Holstein. 1. Genesis, definition and geo-ecological significance. J. Plant Nutr. Soil Sci. 156:197–202
    [Google Scholar]
  23. Bingham AH, Cotrufo MF 2016. Organic nitrogen storage in mineral soil: implications for policy and management. Sci. Total Environ. 551:116–26
    [Google Scholar]
  24. Blair NE, Aller RC 2012. The fate of terrestrial organic carbon in the marine environment. Annu. Rev. Mar. Sci. 4:401–23
    [Google Scholar]
  25. Boix-Fayos C, de Vente J, Albaladejo J, Martínez-Mena M 2009. Soil carbon erosion and stock as affected by land use changes at the catchment scale in Mediterranean ecosystems. Agric. Ecosyst. Environ. 133:75–85
    [Google Scholar]
  26. Boyer EW, Howarth RW, Galloway JN, Dentener FJ, Green PA, Vörösmarty CJ 2006. Riverine nitrogen export from the continents to the coasts. Glob. Biogeochem. Cycles 20:GB1S91
    [Google Scholar]
  27. Butman D, Raymond PA 2011. Significant efflux of carbon dioxide from streams and rivers in the United States. Nat. Geosci. 4:839–42
    [Google Scholar]
  28. Carroll EM, Miller WW, Johnson DW, Saito L, Qualls RG, Walker RF 2007. Spatial analysis of a large magnitude erosion event following a Sierran wildfire. J. Environ. Qual. 36:1105
    [Google Scholar]
  29. Chadwick KD, Asner GP 2016. Tropical soil nutrient distributions determined by biotic and hillslope processes. Biogeochemistry 127:273–89
    [Google Scholar]
  30. Chadwick O, Derry L, Vitousek P, Huebert B, Hedin L 1999. Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–97
    [Google Scholar]
  31. Chaopricha NT, Marín-Spiotta E 2014. Soil burial contributes to deep soil organic carbon storage. Soil Biol. Biochem. 69:251–64
    [Google Scholar]
  32. Cirmo CP, McDonnell JJ 1997. Linking the hydrologic and biogeochemical controls of nitrogen transport in near-stream zones of temperate-forested catchments: a review. J. Hydrol. 199:88–120
    [Google Scholar]
  33. Cleveland C, Liptzin D 2007. C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass. Biogeochemistry 85:235–52
    [Google Scholar]
  34. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ et al. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–84
    [Google Scholar]
  35. Coynel A, Seyler P, Etcheber H, Meybeck M, Orange D 2005. Spatial and seasonal dynamics of total suspended sediment and organic carbon species in the Congo River. Glob. Biogeochem. Cycles 19:GB4019
    [Google Scholar]
  36. Dai KH, Johnson CE, Driscoll CT 2001. Organic matter chemistry and dynamics in clear-cut and unmanaged hardwood forest ecosystems. Biogeochemistry 54:51–83
    [Google Scholar]
  37. Daily GC 1995. Restoring value to the world's degraded lands. Science 269:350–54
    [Google Scholar]
  38. Dlugoß V, Fiener P, Van Oost K, Schneider K 2012. Model based analysis of lateral and vertical soil carbon fluxes induced by soil redistribution processes in a small agricultural catchment. Earth Surf. Process. Landf. 37:193–208
    [Google Scholar]
  39. Doetterl S, Berhe AA, Nadeu E, Wang Z, Sommer M, Fiener P 2016. Erosion, deposition and soil carbon: a review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth-Sci. Rev. 154:102–22
    [Google Scholar]
  40. Doetterl S, Six J, Van Wesemael B, Van Oost K 2012.a Carbon cycling in eroding landscapes: geomorphic controls on soil organic C pool composition and C stabilization. Glob. Change Biol. 18:2218–32
    [Google Scholar]
  41. Doetterl S, Van Oost K, Six J 2012.b Towards constraining the magnitude of global agricultural sediment and soil organic carbon fluxes. Earth Surf. Process. Landf. 37:642–55
    [Google Scholar]
  42. Dokuchaev VV 1879. Abridged historical account and critical examination of the principal soil classifications existing. Trans. Petersb. Soc. Nat. 1:64–67
    [Google Scholar]
  43. Downing J, Cole J, Middelburg J, Striegl R, Duarte C et al. 2008. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Glob. Biogeochem. Cycles 22:GB1018
    [Google Scholar]
  44. Downing J, Prairie Y, Cole J, Duarte C, Tranvik L et al. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51:2388–97
    [Google Scholar]
  45. Dymond J 2010. Soil erosion in New Zealand is a net sink of CO2. Earth Surf. Process. Landf. 35:1763–72
    [Google Scholar]
  46. Farkas C, Beldring S, Bechmann M, Deelstra J 2013. Soil erosion and phosphorus losses under variable land use as simulated by the INCA-P model. Soil Use Manag 29:124–37
    [Google Scholar]
  47. Filippelli GM 2008. The global phosphorus cycle: past, present, and future. Elements 4:89–95
    [Google Scholar]
  48. Forel FA 1892. Le Leman, Monographie Limnologique (1892–1904) Lausanne: F. Rouge
  49. Galloway JN, Leach AM, Bleeker A, Erisman JW 2013. A chronology of human understanding of the nitrogen cycle. Philos. Trans. R. Soc. B 368:20130120
    [Google Scholar]
  50. Galy V, France-Lanord C, Beyssac O, Faure P, Kudrass H, Palhol F 2007. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450:407–10
    [Google Scholar]
  51. Gregorich E, Greer K, Anderson D, Liang B 1998. Carbon distribution and losses: erosion and deposition effects. Soil Till. Res. 47:291–302
    [Google Scholar]
  52. Gruber N, Galloway JN 2008. An Earth-system perspective of the global nitrogen cycle. Nature 451:293–96
    [Google Scholar]
  53. Guo L, Macdonald RW 2006. Source and transport of terrigenous organic matter in the upper Yukon River: evidence from isotope (δ13C, Δ14C, and δ15N) composition of dissolved, colloidal, and particulate phases. Glob. Biogeochem. Cycles 20:GB2011
    [Google Scholar]
  54. Harden JW, Berhe AA, Torn M, Harte J, Liu S, Stallard RF 2008. Soil erosion: data say C sink. Science 320:178–79
    [Google Scholar]
  55. Harden JW, Sharpe JM, Parton WJ, Ojima DS, Fries TL et al. 1999. Dynamic replacement and loss of soil carbon on eroding cropland. Glob. Biogeochem. Cycles 13:885–901
    [Google Scholar]
  56. Hart SC, Firestone MK, Paul EA, Smith JL 1993. Flow and fate of soil nitrogen in an annual grassland and a young mixed-conifer forest. Soil Biol. Biochem. 25:431–42
    [Google Scholar]
  57. Hilton RG 2017. Climate regulates the erosional carbon export from the terrestrial biosphere. Geomorphology 277:118–32
    [Google Scholar]
  58. Hilton RG, Galy A, West AJ, Hovius N, Roberts GG 2013. Geomorphic control on the δ15N of mountain forests. Biogeosciences 10:1693–705
    [Google Scholar]
  59. Hooke RL, Martín-Duque JF 2012. Land transformations by humans: a review. GSA Today 22:4–10
    [Google Scholar]
  60. Hotchkiss E, Hall R Jr., Sponseller R, Butman D, Klaminder J et al. 2015. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat. Geosci. 8:696
    [Google Scholar]
  61. Houlton B, Morford S 2015. A new synthesis for terrestrial nitrogen inputs. SOIL 1:381–97
    [Google Scholar]
  62. Hu Y, Berhe AA, Fogel M, Heckrath GJ, Kuhn NJ 2016. A field investigation on settling velocity specific SOC distribution along hillslopes. Biogeochemistry 128:339–51
    [Google Scholar]
  63. ISRIC 1990. Global Assessment of Human-Induced Soil Degradation Nairobi: UN Environ. Program
  64. Jacinthe PA, Lal R 2001. A mass balance approach to assess carbon dioxide evolution during erosional events. Land Degrad. Dev. 12:329–39
    [Google Scholar]
  65. Jacinthe PA, Lal R, Kimble JM 2001. Assessing water erosion impacts on soil carbon pools and fluxes. Assessment Methods for Soil Carbon R Lal, JM Kimble, RF Follett, BA Stewart 427–50 Boca Raton, FL: Lewis
    [Google Scholar]
  66. Jenny H 1941. Factors of Soil Formation: A System of Quantitative Pedology New York: McGraw-Hill
  67. Jenny H, Gessel SP, Bingham FT 1949. Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Sci 68:419–32
    [Google Scholar]
  68. Kaye J, Binkley D, Rhoades C 2003. Stable soil nitrogen accumulation and flexible organic matter stoichiometry during primary floodplain succession. Biogeochemistry 63:1–22
    [Google Scholar]
  69. Kendall HW, Pimentel D 1994. Constraints on the expansion of the global food supply. Ambio 23:198–205
    [Google Scholar]
  70. Kirkels FMSA, Cammeraat LH, Kuhn NJ 2014. The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes—a review of different concepts. Geomorphology 226:94–105
    [Google Scholar]
  71. Kirschbaum MUF 2000. Will changes in SOC act as a positive or negative feedback on global warming. Biogeochemistry 48:21–51
    [Google Scholar]
  72. Kronvang B, Vagstad N, Behrendt H, Bøgestrand J, Larsen SE 2007. Phosphorus losses at the catchment scale within Europe: an overview. Soil Use Manag 23:104–16
    [Google Scholar]
  73. Lal R 1987. Effects of soil-erosion on crop productivity. Crit. Rev. Plant Sci. 5:303–67
    [Google Scholar]
  74. Lal R 1995. Global soil erosion by water and carbon dynamics. Soils and Global Change R Lal, JM Kimble, E Levine, BA Stewart 131–41 Boca Raton, FL: Lewis
    [Google Scholar]
  75. Lal R 2001. Soil conservation for C-sequestration. Sustaining the Global Farm: Selected Papers from the 10th International Soil Conservation Organization Meeting DE Stott, RH Mohtar, GC Steinhardt West Lafayette, IN: Int. Soil Conserv. Org.
    [Google Scholar]
  76. Lal R 2003.a Global potential of soil carbon sequestration to mitigate the greenhouse effect. Crit. Rev. Plant Sci. 22:151–84
    [Google Scholar]
  77. Lal R 2003.b Offsetting global CO2 emissions by restoration of degraded soils and intensification of world agriculture and forestry. Land Degrad. Dev. 14:309–22
    [Google Scholar]
  78. Lal R 2003.c Soil erosion and the global carbon budget. Environ. Int. 29:437–50
    [Google Scholar]
  79. Lal R, Griffin M, Apt J, Lave L, Morgan G 2004.a Response to comments on “Managing soil carbon. .” Science 305:1567d
    [Google Scholar]
  80. Lal R, Griffin M, Apt J, Lave L, Morgan MG 2004.b Managing soil carbon. Science 304:393
    [Google Scholar]
  81. Lambert T, Pierson-Wickmann AC, Gruau G, Jaffrezic A, Petitjean P et al. 2013. Hydrologically driven seasonal changes in the sources and production mechanisms of dissolved organic carbon in a small lowland catchment. Water Resour. Res. 49:5792–803
    [Google Scholar]
  82. Laudon H, Berggren M, Ågren A, Buffam I, Bishop K et al. 2011. Patterns and dynamics of dissolved organic carbon (DOC) in boreal streams: the role of processes, connectivity, and scaling. Ecosystems 14:880–93
    [Google Scholar]
  83. Lavelle P, Dugdale R, Scholes R, Berhe AA, Carpenter E et al. 2005. Nutrient cycling. Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Current State and Trends: Findings of the Condition and Trends Working Group 1331 Washington, DC: Island Press https://www.millenniumassessment.org/en/Condition.html
    [Google Scholar]
  84. Leguédois S, Planchon O, Legout C, Le Bissonnais Y 2005. Splash Projection distance for aggregated soils. Soil Sci. Soc. Am. J. 69:30–37
    [Google Scholar]
  85. Lewis WM, Melack J, McDowell W, McClain M, Richey J 1999. Nitrogen yields from undisturbed watersheds in the Americas. Biogeochemistry 46:149–62
    [Google Scholar]
  86. Likens GE, Bormann FH 1974. Linkages between terrestrial and aquatic ecosystems. BioScience 24:447–56
    [Google Scholar]
  87. Liu S, Bliss N, Sundquist E, Huntington TG 2003. Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition. Glob. Biogeochem. Cycles 17:1074
    [Google Scholar]
  88. Lorenz K, Lal R, Shipitalo MJ 2011. Stabilized soil organic carbon pools in subsoils under forest are potential sinks for atmospheric CO2. Forest Sci 57:19–25
    [Google Scholar]
  89. Ludwig W, Probst JL, Kempe S 1996. Predicting the oceanic input of organic carbon by continental erosion. Glob. Biogeochem. Cycles 10:23–41
    [Google Scholar]
  90. Marín-Spiotta E, Chaopricha NT, Plante AF, Diefendorf AF, Muller CW et al. 2014.a Long-term stabilization of deep soil carbon by fire and burial during early Holocene climate change. Nat. Geosci. 7:428–32
    [Google Scholar]
  91. Marín-Spiotta E, Gruley KE, Crawford J, Atkinson EE, Miesel JR et al. 2014.b Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundaries. Biogeochemistry 117:279–97
    [Google Scholar]
  92. Masiello CA, Druffel ERM 2001. Carbon isotope geochemistry of the Santa Clara River. Glob. Biogeochem. Cycles 15:407–16
    [Google Scholar]
  93. Massey HF, Jackson ML 1952. Selective erosion of soil fertility constituents. Soil Sci. Soc. Am. J. 16:353–56
    [Google Scholar]
  94. Mayorga E, Aufdenkampe A, Masiello C, Krusche A, Hedges J et al. 2005. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436:538–41
    [Google Scholar]
  95. Mayorga E, Seitzinger SP, Harrison JA, Dumont E, Beusen AH et al. 2010. Global Nutrient Export from WaterSheds 2 (NEWS 2): model development and implementation. Environ. Model. Softw. 25:837–53
    [Google Scholar]
  96. McCarty GW, Ritchie JC 2002. Impact of soil movement on carbon sequestration in agricultural ecosystems. Environ. Pollut. 116:423–30
    [Google Scholar]
  97. McCorkle EP, Berhe AA, Hunsaker CT, McFarlane KJ, Johnson D et al. 2016. Tracing the source of soil organic matter eroded from temperate forested catchments using carbon and nitrogen isotopes. Chem. Geol 445:172–84
    [Google Scholar]
  98. Meade RH, Yuzyk TR, Day TJ 1990. Movement and storage of sediment in rivers of the United States and Canada. Surface Water Hydrology MG Wolman, HC Riggs 255–80 Boulder, CO: Geol. Soc. Am.
    [Google Scholar]
  99. Meybeck M 1982. Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 282:401–50
    [Google Scholar]
  100. Meybeck M 1987. Global chemical weathering of surficial rocks estimated from river dissolved loads. Am. J. Sci. 287:401–28
    [Google Scholar]
  101. Milne G 1936. Normal erosion as a factor in soil profile development. Nature 138:548–49
    [Google Scholar]
  102. Nadeu E, Berhe AA, De Vente J, Boix-Fayos C 2012. Erosion, deposition and replacement of soil organic carbon in Mediterranean catchments: a geomorphological, isotopic and land use change approach. Biogeosciences 9:1099–111
    [Google Scholar]
  103. Natl. Res. Counc. 1999. Hydrologic Science Priorities for the U.S. Global Change Research Program: An Initial Assessment Washington, DC: Natl. Acad. Press
  104. Okin GS, Mahowald N, Chadwick OA, Artaxo P 2004. Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Glob. Biogeochem. Cycles 18:GB2005
    [Google Scholar]
  105. Oskarsson H, Arnalds O, Gudmundsson J, Gudbergsson G 2004. Organic carbon in Icelandic Andosols: geographical variation and impact of erosion. Catena 56:225–38
    [Google Scholar]
  106. Palis RG, Ghandiri H, Rose CW, Saffigna PG 1997. Soil erosion and nutrient loss. III. Changes in the enrichment ratio of total nitrogen and organic carbon under rainfall detachment and entrainment. Aust. J. Soil Res. 35:891–905
    [Google Scholar]
  107. Parfitt GD 1976. Surface chemistry of oxides. J. Pure Appl. Chem. 48:415–18
    [Google Scholar]
  108. Pennock DJ, Zebarth B, De Jong E 1987. Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada. Geoderma 40:297–315
    [Google Scholar]
  109. Peterjohn WT, Schlesinger WH 1990. Nitrogen loss from deserts in the southwestern United States. Biogeochemistry 10:67–79
    [Google Scholar]
  110. Pimentel D, Harvey C, Resosudarmo P, Sinclair K, Kurz D et al. 1995. Environmental and economic costs of soil erosion and conservation benefits. Science 267:1117–23
    [Google Scholar]
  111. Pimentel D, Kounang N 1998. Ecology of soil erosion in ecosystems. Ecosystems 1:416–26
    [Google Scholar]
  112. Porder S, Paytan A, Vitousek PM 2005. Erosion and landscape development affect plant nutrient status in the Hawaiian Islands. Oecologia 142:440–49
    [Google Scholar]
  113. Porder S, Vitousek PM, Chadwick OA, Chamberlain CP, Hilley GE 2007. Uplift, erosion, and phosphorus limitation in terrestrial ecosystems. Ecosystems 10:159–71
    [Google Scholar]
  114. Quinton JN, Govers G, Van Oost K Bardgett RD 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 3:311–14
    [Google Scholar]
  115. Raymond PA, Bauer JE 2001. Riverine export of aged terrestrial organic matter to the North Atlantic Ocean. Nature 409:497–500
    [Google Scholar]
  116. Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C et al. 2013. Global carbon dioxide emissions from inland waters. Nature 503:355–59
    [Google Scholar]
  117. Raymond PA, McClelland JW, Holmes RM, Zhulidov AV, Mull K et al. 2007. Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest arctic rivers. Glob. Biogeochem. Cycles 21:GB4011
    [Google Scholar]
  118. Regnier P, Friedlingstein P, Ciais P, Mackenzie FT, Gruber N et al. 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6:597–607
    [Google Scholar]
  119. Renwick WH, Smith SV, Bartley JD, Buddemeier RW 2005. The role of impoundments in the sediment budget of the conterminous United States. Geomorphology 71:99–111
    [Google Scholar]
  120. Renwick WH, Smith SV, Sleezer RO, Buddemeier RW 2004. Comment on “Managing soil carbon” (II). Science 305:1567c
    [Google Scholar]
  121. Richey JE, Hedges JI, Devol AH, Quay PD, Victoria R et al. 1990. Biogeochemistry of carbon in the Amazon River. Limnol. Oceanogr. 35:352–71
    [Google Scholar]
  122. Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–20
    [Google Scholar]
  123. Ritchie J, Nearing M, Nichols M, Ritchie C 2005. Patterns of soil erosion and redeposition on Lucky Hills watershed, Walnut Gulch experimental watershed, Arizona. Catena 61:122–30
    [Google Scholar]
  124. Rockhold M, Yarwood R, Selker J 2004. Coupled microbial and transport processes in soils. Vadose Zone J 3:368
    [Google Scholar]
  125. Rosenbloom NA, Harden JW, Neff JC, Schimel DS 2006. Geomorphic control of landscape carbon accumulation. J. Geophys. Res. 111:G01004
    [Google Scholar]
  126. Rumpel C, Chaplot V, Planchon O, Bernadou J, Valentin C, Mariotti A 2006. Preferential erosion of black carbon on steep slopes with slash and burn agriculture. Catena 65:30–40
    [Google Scholar]
  127. Sanderman J, Berhe AA 2017. Biogeochemistry: the soil carbon erosion paradox. Nat. Clim. Change 7:317–19
    [Google Scholar]
  128. Sanderman J, Chappell A 2012. Uncertainty in soil carbon accounting due to unrecognized soil erosion. Glob. Change Biol. 19:264–72
    [Google Scholar]
  129. Sanderman J, Lohse KA, Baldock JA, Amundson R 2009. Linking soils and streams: sources and chemistry of dissolved organic matter in a small coastal watershed. Water Resour. Res. 45:W03418
    [Google Scholar]
  130. Schimel D, Stillwell M, Woodmansee R 1985. Biogeochemistry of C, N, and P in a soil catena of the shortgrass steppe. Ecology 66:276–82
    [Google Scholar]
  131. Schlesinger WH 1990. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348:232–34
    [Google Scholar]
  132. Schlesinger WH 1995. Soil respiration and changes in soil carbon stocks. Biotic Feedbacks in the Global Climate System: Will the Warming Feed the Warming FT Mackenzie 159–68 New York: Oxford Univ. Press
    [Google Scholar]
  133. Schlesinger WH, Abrahams AD, Parsons AJ, Wainwright J 1999. Nutrient losses in runoff from grassland and shrubland habitats in Southern New Mexico. I. Rainfall simulation experiments. Biogeochemistry 45:21–34
    [Google Scholar]
  134. Schuman GE, Burwell RE, Piest RF, Spomer RG 1973. Nitrogen losses in surface runoff from agricultural watersheds on Missouri Valley loess. J. Environ. Qual. 2:299–302
    [Google Scholar]
  135. Seitzinger SP, Harrison JA, Dumont E, Beusen AHW, Bouwman AF 2005. Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: an overview of Global Nutrient Export from Watersheds (NEWS) models and their application. Glob. Biogeochem. Cycles 19:GB4S01
    [Google Scholar]
  136. Seitzinger SP, Mayorga E, Bouwman AF, Kroeze C, Beusen AHW et al. 2010. Global river nutrient export: a scenario analysis of past and future trends. Glob. Biogeochem. Cycles 24:GB0A08
    [Google Scholar]
  137. Sharples J, Middelburg JJ, Fennel K, Jickells TD 2017. What proportion of riverine nutrients reaches the open ocean. Glob. Biogeochem. Cycles 31:39–58
    [Google Scholar]
  138. Sharpley A 1985. The selection erosion of plant nutrients in runoff. Soil Sci. Soc. Am. J. 49:1527–34
    [Google Scholar]
  139. Shelef E, Rowl JC, Wilson CJ, Hilley GE, Mishra U et al. 2017. Large uncertainty in permafrost carbon stocks due to hillslope soil deposits. Geophys. Res. Lett. 44:6134–44
    [Google Scholar]
  140. Smith SV, Renwick WH, Buddemeier RW, Crossland CJ 2001. Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Glob. Biogeochem. Cycles 15:697–707
    [Google Scholar]
  141. Smith SV, Sleezer RO, Renwick WH, Buddemeier RW 2005. Fates of eroded soil organic carbon: Mississippi Basin case study. Ecol. Appl 15:1929–40
    [Google Scholar]
  142. Spencer RGM, Hernes PJ, Aufdenkampe AK, Baker A, Gulliver P et al. 2012. An initial investigation into the organic matter biogeochemistry of the Congo River. Geochim. Cosmochim. Acta 84:614–27
    [Google Scholar]
  143. Spencer RGM, Hernes PJ, Ruf R, Baker A, Dyda RY et al. 2010. Temporal controls on dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo. J. Geophys. Res. 115:G03013
    [Google Scholar]
  144. Stacy E, Hart SC, Hunsaker CT, Johnson DW, Berhe AA 2015. Soil carbon and nitrogen erosion in forested catchments: implications for erosion-induced terrestrial carbon sequestration. Biogeosciences 12:4861–74
    [Google Scholar]
  145. Stallard R 1998. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Glob. Biogeochem. Cycles 12:231–57
    [Google Scholar]
  146. Starr GC, Lal R, Kimble JM, Owens L 2001. Assessing the impact of erosion on soil organic carbon pools and fluxes. Assessment Methods for Soil Carbon R Lal, JM Kimble, RF Follet, BA Stewart 417–26 Boca Raton, FL: Lewis
    [Google Scholar]
  147. Starr GC, Lal R, Malone R, Hothem D, Owens L, Kimble J 2000. Modeling soil carbon transported by water erosion processes. Land Degrad. Dev. 11:83–91
    [Google Scholar]
  148. Staub B, Rosenzweig C 1992. Global Zobler soil type, soil texture, surface slope, and other properties. Digital raster data on a 1-degree geographic (lat/long) 180×360 grid. Global Ecosystems Database Version 2.0. Seven Independent Spatial Layers. 561,782 Bytes in 16 Files Boulder, CO: NOAA Natl. Geophys. Data Cent.
    [Google Scholar]
  149. Stevenson FJ 1965. Origin and distribution of nitrogen in soil. Agron. Monogr. 10:1–42
    [Google Scholar]
  150. Striegl RG, Aiken GR, Dornblaser MM, Raymond PA, Wickland KP 2005. A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophysical Res. Lett. 32:L21413
    [Google Scholar]
  151. Tarnocai C, Canadell J, Schuur E, Kuhry P, Mazhitova G, Zimov S 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23:GB2023
    [Google Scholar]
  152. Thornton P, Doney S, Lindsay K, Moore J, Mahowald N et al. 2009. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences 6:2099–120
    [Google Scholar]
  153. Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG et al. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54:2298–314
    [Google Scholar]
  154. Turnbull L, Wainwright J, Brazier RE 2011. Nitrogen and phosphorus dynamics during runoff events over a transition from grassland to shrubland in the south‐western United States. Hydrol. Process. 25:1–17
    [Google Scholar]
  155. Van Hemelryck H, Fiener P, Van Oost K, Govers G 2009. The effect of soil redistribution on soil organic carbon: an experimental study. Biogeosci. Discuss. 6:5031–71
    [Google Scholar]
  156. Van Hemelryck H, Fiener P, Van Oost K, Govers G, Merckx R 2010. The effect of soil redistribution on soil organic carbon: an experimental study. Biogeosciences 7:3971–86
    [Google Scholar]
  157. Van Oost K, Govers G, Quine TA, Heckrath G, Olesen JE et al. 2005. Landscape-scale modeling of carbon cycling under the impact of soil redistribution: the role of tillage erosion. Glob. Biogeochem. Cycles 19:GB4014
    [Google Scholar]
  158. Van Oost K, Quine T, Govers G, De Gryze S, Six J et al. 2007. The impact of agricultural soil erosion on the global carbon cycle. Science 318:626–29
    [Google Scholar]
  159. Van Oost K, Verstraeten G, Doetterl S, Notebaert B, Wiaux F et al. 2012. Legacy of human-induced C erosion and burial on soil-atmosphere C exchange. PNAS 109:19492–97
    [Google Scholar]
  160. VandenBygaart AJ, Kroetsch D, Gregorich EG, Lobb D 2012. Soil C erosion and burial in cropland. Glob. Change Biol. 18:1441–52
    [Google Scholar]
  161. Vitousek PM, Porder S, Houlton BZ, Chadwick OA 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 20:5–15
    [Google Scholar]
  162. Vitousek PM, Reiners WA 1975. Ecosystem succession and nutrient retention: a hypothesis. BioScience 25:376–81
    [Google Scholar]
  163. von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G et al. 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur. J. Soil Sci. 57:426–45
    [Google Scholar]
  164. Wang X, Cammeraat LH, Wang Z, Zhou J, Govers G, Kalbitz K 2013.a Stability of organic matter in soils of the Belgian Loess Belt upon erosion and deposition. Eur. J. Soil Sci. 64:219–28
    [Google Scholar]
  165. Wang Z, Govers G, Steegen A, Clymans W, Van den Putte A et al. 2010. Catchment-scale carbon redistribution and delivery by water erosion in an intensively cultivated area. Geomorphology 124:65–74
    [Google Scholar]
  166. Wang Z, Hoffmann T, Six J, Kaplan JO, Govers G et al. 2017. Human-induced erosion has offset one-third of carbon emissions from land cover change. Nat. Clim. Change 7:345–49
    [Google Scholar]
  167. Wang ZA, Bienvenu DJ, Mann PJ, Hoering KA, Poulsen JR et al. 2013.b Inorganic carbon speciation and fluxes in the Congo River. Geophys. Res. Lett. 40:511–16
    [Google Scholar]
  168. Ward ND, Keil RG, Medeiros PM, Brito DC, Cunha AC et al. 2013. Degradation of terrestrially derived macromolecules in the Amazon River. Nat. Geosci. 6:530–33
    [Google Scholar]
  169. Weintraub SR, Taylor PG, Porder S, Cleveland CC, Asner GP, Townsend AR 2015. Topographic controls on soil nitrogen availability in a lowland tropical forest. Ecology 96:1561–74
    [Google Scholar]
  170. Yang D, Kanae S, Oki T, Koike T, Musiake K 2003. Global potential soil erosion with reference to land use and climate changes. Hydrol. Process. 17:2913–28
    [Google Scholar]
  171. Yoo K, Amundson R, Heimsath A, Dietrich W 2005. Erosion of upland hillslope soil organic carbon: coupling field measurements with a sediment transport model. Glob. Biogeochem. Cycles 19:GB3003
    [Google Scholar]
  172. Yoo K, Amundson R, Heimsath A, Dietrich W 2006. Spatial patterns of soil organic carbon on hillslopes: integrating geomorphic processes and the biological C cycle. Geoderma 130:47–65
    [Google Scholar]
  173. Yuan ZY, Chen HYH 2015. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nat. Clim. Change 5:465–69
    [Google Scholar]
  174. Yue Y, Ni J, Ciais P, Piao S, Wang T et al. 2016. Lateral transport of soil carbon and land–atmosphere CO2 flux induced by water erosion in China. PNAS 113:6617–22
    [Google Scholar]
  175. Zhang JH, Ni SJ, Su ZA 2012. Dual roles of tillage erosion in lateral SOC movement in the landscape. Eur. J. Soil Sci. 63:165–76
    [Google Scholar]
/content/journals/10.1146/annurev-earth-082517-010018
Loading
/content/journals/10.1146/annurev-earth-082517-010018
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error