Skip to main content
Log in

Non-target toxicity of nine agrochemicals toward larvae and adults of two generalist predators active in peach orchards

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Chrysoperla externa and Coleomegilla quadrifasciata are important biological control agents in peach orchards. However, orchard management with these predatory insects is viable only by using selective agrochemicals. The objective of this study is to evaluate the toxicity of nine agrochemicals used in peach orchards in larval and adult stages of the C. externa and C. quadrifasciata in laboratory conditions. The bioassays followed the methodologies proposed by the International Organization for Biological and Integrated Control (IOBC). Larvae and adults of C. externa and C. quadrifasciata were exposed to the dry residues of these products. Lethal and sublethal effects were evaluated in bioassays with the larval and adult stages of both predators. The agrochemicals were classified according to the IOBC guidelines. The insecticide chlorantraniliprole was harmless (class 1) to the larval stage of C. externa and C. quadrifasciata. Azadirachtin, copper 25% + calcium 10%, and deltamethrin were harmless to the adult stage of both insect species. The organophosphates fenitrothion and malathion were harmful (class 4) to both species in the larval and adult stages and should not be used in peach orchards. Therefore, this study demonstrates the importance of toxicity and the lethal and sublethal effects of these agrochemicals to better determine their compatibility with IPM in peach production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott CE (1945) The toxic gases of lime-sulfur. J Econ Entomol 38:618–620

    Article  CAS  Google Scholar 

  • Abbes K, Biondi A, Kurtulus A, Ricupero M, Russo A, Siscaro G, Chermiti B, Zappalà L (2015) Combined non-target effects of insecticide and high temperature on the Parasitoid Bracon nigricans. PLoS ONE 10(9):e0138411. https://doi.org/10.1371/journal.pone.0138411

    Article  CAS  Google Scholar 

  • Araujo ES, Paiva LR, Alves SG, Bevacqua D, Nava DE, Lavigne C, García FR (2019) Phenological asynchrony between the fruit fly Anastrepha fraterculus and early maturing peach cultivars could contribute to pesticide use reduction. Spanish J Agric Res 17(1):e1001. https://doi.org/10.5424/sjar/2019171-13294

    Article  Google Scholar 

  • Azod F, Shahidi-Noghabi S, Mahdian K, Smagghe G (2016) Lethal and sublethal effects of spirotetramat and abamectin on predatory beetles (Menochilus sexmaculatus) via prey (Agonoscena pistaciae) exposure, important for integrated pest management in pistachio orchards. Belg J Zool 146(2):113–122

    Google Scholar 

  • Bacci L, Crespo AL, Galvan TL, Pereira EJ, Picanço MC, Silva GA, Chediak M (2007) Toxicity of insecticides to the sweetpotato whitefly (Hemiptera: Aleyrodidae) and its natural enemies. Pest Manag Sci 63:699–706. https://doi.org/10.1002/ps.1393

    Article  CAS  Google Scholar 

  • Benamú MA, Schneider MI, Gonzalez A, Sánchez NE (2013) Short and long-term effects of three neurotoxic insecticides on the orb-web spider Alpaida veniliae (Araneae, Araneidae): implications for IPM programs. Ecotoxicology 22(7):1155–1164. https://doi.org/10.1007/s10646-013-1102-9

    Article  CAS  Google Scholar 

  • Bengochea P, Saelices R, Amor F, Adán A, Budia F, Estal P, Viñuela E, Medina P (2014) Non-target effects of kaolin and coppers applied on olive trees for the predatory lacewing Chrysoperla carnea. Biocontrol Sci Technol 24(6):625–640. https://doi.org/10.1080/09583157.2014.884212

    Article  Google Scholar 

  • Bernabò P, Gadfio M, Bellamoli F, Viero G, Lencioni V (2017) DNA damage and translational response during detoxification from copper exposure in a wild population of Chironomus riparius. Chemosphere 173:235–244. https://doi.org/10.1016/j.chemosphere.2017.01.052

    Article  CAS  Google Scholar 

  • Biondi A, Desneux N, Sicaro G, Zappalà L (2012) Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere. https://doi.org/10.1016/j.chemosphere.2011.12.082

  • Biondi A, Zappalà L, Stark JD, Desneux N (2013) Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? Plos One 8(9):e76548. https://doi.org/10.1371/journal.pone.0076548

    Article  CAS  Google Scholar 

  • Botton M, Scoz PL, Arioli CJ (2002) IPM on peaches in Brazil: actual situation and future trends. Acta Hortic. 592:655–658. https://doi.org/10.17660/ActaHortic.2002.592.90

    Article  CAS  Google Scholar 

  • Botton M, Kulcheski F, Colletta VD, Ariolli CJ, Pastori PL (2005) Avaliação do uso do feromônio de confundimento no controle de Grapholita molesta (Lepidoptera: Tortricidae) em pomares de pessegueiro. Idésia 23:43–50

    Google Scholar 

  • Brattsten LB, Holyoke Jr CW, Leeper JR, Raffa KF (1986) Insecticide resistance: challenge to pest management and basic research. Science 231:1255–1260. https://doi.org/10.1126/science.231.4743.1255

    Article  CAS  Google Scholar 

  • Brooks SJA (1994) Taxonomic review of the common green lacewing genus Chrysoperla (Neuroptera: Chrysopidae). Bull Br Nat Hist Ent 63(2):137–210

    Google Scholar 

  • Bueno AF, Carvalho GA, Santos AC, Sosa-Gómez DR, Silva DM (2017) Pesticide selectivity to natural enemies: challenges and constraints for research and field recommendation. Cienc Rural 47(6):1–8. https://doi.org/10.1590/0103-8478cr20160829

    Article  Google Scholar 

  • Cabrera P, Cormier D, Lucas E (2018) Sublethal effects of two reduced-risk insecticides: when the invasive ladybeetle is drastically affected, whereas the indigenous not. J Pest Sci 91(3):1153–1164. https://doi.org/10.1007/s10340-018-0978-9

    Article  Google Scholar 

  • Carvalho GA, Parra JRP, Baptista GC (2001) Seletividade de alguns produtos fitossanitários a duas linhagens de Trichogramma pretiosum Riley, 1879 (Hymenoptera: Trichogrammatidae). Ciênc Agrotec 25(3):583–591

    Google Scholar 

  • Carvalho CF, Souza B (2000) Métodos de criação e produção de crisopídeos. In: Bueno VHP (ed) Controle biológico de pragas: produção massal e controle de qualidade. UFLA, Lavras, p 91–109

    Google Scholar 

  • Castilhos RV, Grützmacher AD, Nava DE, Zotti MJ, Siqueira PRB (2011) Seletividade de agrotóxicos utilizados em pomares de pêssego a adultos do predador Chrysoperla externa (Hagen,1861) (Neuroptera: Chrysopidae). Rev Bras Frutic 3(1):73–80. https://doi.org/10.1590/S0100-29452011005000042

    Article  Google Scholar 

  • Castro AA, Corrêa AS, Legaspi JC, Guedes RNC, Serrão JE, Zanuncio JC (2013) Survival and behavior of the insecticide-exposed predators Podisus nigrispinus and Supputius cincticeps (Heteroptera: Pentatomidae). Chemosphere 3(6):1043–1050. https://doi.org/10.1016/j.chemosphere.2013.05.075

    Article  CAS  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) Sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440

    Article  CAS  Google Scholar 

  • Di N, Hladun KR, Zhang K, Liu TX, Trumble JT (2016) Laboratory bioassays on the impact of cadmium, copper and lead on the development and survival of honeybee (Apis mellifera L.) larvae and foragers. Chemosphere 152:530–538. https://doi.org/10.1016/j.chemosphere.2016.03.033

    Article  CAS  Google Scholar 

  • Duarte F, Calvo MV, Borges A, Scaton IB (2015) Geostatistics and geographic information systems to study the spatial distribution of Grapholita molesta (Busck) (Lepidoptera: Tortricidae) in peach fields. Neotrop Entomol 44:319–327. https://doi.org/10.1007/s13744-015-0288-3

    Article  CAS  Google Scholar 

  • Fernandes FL, Bacci L, Fernandes MS (2010) Impact and selectivity of insecticides to predators and parasitoids. EntomoBrasilis 3(1):1–10

    Article  Google Scholar 

  • Fortes JF (2002) Tratamento de inverno para o cultivo do pessegueiro. Embrapa Clima Temperado, Pelotas

    Google Scholar 

  • Garzón A, Medina P, Amor F, Vinuela E, Budia F (2015) Toxicity and sublethal effects of six insecticides to last instar larvae and adults of the biocontrol agents Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) and Adalia bipunctata (L.) (Coleoptera: Coccinellidae). Chemosphere 132:87–93. https://doi.org/10.1016/j.chemosphere.2015.03.016

    Article  CAS  Google Scholar 

  • Gessler C, Pertot I, Perazzolli M (2011) Plasmopara viticola: a review of knowledge ondowny mildew of grapevine and effective disease management. Phytopathol Mediterr 50:3–44. https://doi.org/10.14601/Phytopathol_Mediterr-9360

    Article  Google Scholar 

  • Guedes RNC, Smagghe G, Stark JD, Desneux N (2016) Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annu Rev Entomol 61:3.1–3.20. https://doi.org/10.1146/annurev-ento-010715-023646

    Article  CAS  Google Scholar 

  • Hafsi A, Abbes K, Harbi A, Duyck PF, Chermiti B (2016) Attract-and-kill systems efficiency against Ceratitis capitata (Diptera: Tephritidae) and effects on non-target insects in peach orchards. J Appl Entomol 140:28–36. https://doi.org/10.1111/jen.12259

    Article  CAS  Google Scholar 

  • Hannig GT, Ziedfe M, Marçon PG (2009) Feeding cessation effects of chlorantraniliprole, a new anthranilic diamide insecticide, in comparison with several insecticides in distinct chemical classes andmode-of-action groups. Pest Manag Sci 65:969–974. https://doi.org/10.1002/ps.1781

    Article  CAS  Google Scholar 

  • Hassan SA (1988) Guideline for testing the side effect of pesticides on the egg parasite Trichogramma cacoeciae. Bulletin SROP 11:3–18

    Google Scholar 

  • IRAC, Insecticide Resistance Action Committee (2018). The Irac classification: an interactive mode of action (MoA) tool. Disponível em: http://www.irac-online.org/modes-of-action/. Accessed 05 Dec 2018

  • Jam NA, Saber M (2018) Sublethal effects of imidacloprid and pymetrozine on the functional response of the aphid parasitoid, Lysiphlebus fabarum. Entomol Gen 38(2):173–190. https://doi.org/10.1127/entomologia/2018/0734

    Article  Google Scholar 

  • Lixa AT, Campos JM, Resende ALS, Silva JC, Almeida MMTB, Aguiar-Menezes EL (2010) Diversidade de coccinellidae (Coleoptera) em plantas aromáticas (Apiaceae) como sítios de sobrevivência e reprodução em sistema agroecológico. Neotrop Entomol 39:354–359. https://doi.org/10.1590/S1519-566X2010000300007

    Article  Google Scholar 

  • Lo PL (2004) Toxicity of pesticides to Halmus chalybeus (Coleoptera: Coccinellidae) and the effect of three fungicides on their densities in a citrus orchard. N Z J Crop Hortic Sci 32(1):69–76. https://doi.org/10.1080/01140671.2004.9514281

    Article  CAS  Google Scholar 

  • Madbouni MAZ, Samih MA, Qureshi JA, Biondi A, Namvar P (2017) Compatibility of insecticides and fungicides with the zoophytophagous mirid predator Nesidiocoris tenuis. PLoS ONE 12(11):e0187439. https://doi.org/10.1371/journal.pone.0187439

    Article  CAS  Google Scholar 

  • Marco MP, Pascual N, Bellés X, Camps F, Messeguer A (1990) Ecdysteroid depletion by azadirachtin in Tenebrio molitor pupae. Pest Biochem Physiol 38(1):60–65. https://doi.org/10.1016/0048-3575(90)90149-V

    Article  CAS  Google Scholar 

  • MAPA, Ministério da Agricultura, Pecuária e Abastecimento (2018) Sistema de Agrotóxicos Fitossanitários. http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Accessed 24 Nov

  • MAPA, Ministério da Agricultura Pecuária e Abastecimento (1999) Normas para a produção de produtos orgânicos vegetais e animais. Instrução Normativa n° 7 de 17 de maio de 1999, Brasília, Brasil

    Google Scholar 

  • Milléo J, Meira WV (2012) Morfologia dos Coccinellini (Coleoptera: Coccinellidae) Depositados na Coleção Entomológica dos Campos Gerais do Paraná, Ponta Grossa, Paraná. EntomoBrasilis 5(2):146–163. https://doi.org/10.12741/ebrasilis.v5i2.231

    Article  Google Scholar 

  • Nava DE, Botton M, Arioli CJ, Garcia MS, Grützmacher AD (2014) Insetos e ácaros praga. In: Raseira MCB, Pereira JFM, Carvalho FLC (eds) Pessegueiro. Embrapa, Brasília, p 433–486

    Google Scholar 

  • Nörnberg SD, Grützmacher AD, Nava DE, Valgas RA, Ozelame AL (2016) Residual effects of pesticides in peach orchards on the maize weevil Sitophilus zeamais (Coleoptera: Curculionidae). Rev Bras Frutic 38(3):1–8. https://doi.org/10.1590/0100-29452016017

    Article  Google Scholar 

  • NORMAS, Normas técnicas específicas para a Produção Integrada de Pêssego (2003) Grade de Agroquímicos, Instrução Normativa/ SARC nº 016 - 1º de dezembro de 2003. Disponível em: http://www.inmetro.gov.br/credenciamento/pessego/GradeAgroquimicos.pdf. Accessed 11 Nov 2018

  • Oliveira RL, Gontijo PC, Sâmia RR, Carvalho GA (2019) Long-term effects of chlorantraniliprole reduced risk insecticide applied as seed treatment on lady beetle Harmonia axyridis (Coleoptera: Coccinellidae). Chemosphere 219:678–683. https://doi.org/10.1016/j.chemosphere.2018.12.058

    Article  CAS  Google Scholar 

  • Oliveira NC, Wilcken CF, Matos CAO (2004) Ciclo biológico e predação de três espécies de coccinelídeos (Coleoptera: Coccinellidae) sobre o pulgão-gigante-do-pinus Cinara atlantica (Wilson) (Hemiptera: Aphididae). Rev Bras Entomol 48(4):529–533. https://doi.org/10.1590/S0085-56262004000400016

    Article  Google Scholar 

  • Pasini RA, Grützmacher AD, Pazini JB, De Armas FS, Bueno FA, Pires SN (2018) Side effects of inseticides used in wheat crop on eggs and pupae of Chrysoperla externa and Eriopis connexa. Phytoparasitica 46:115–125. https://doi.org/10.1007/s12600-018-0639-9

    Article  CAS  Google Scholar 

  • Parra JRP (1997) Técnicas de criação de Anagasta kuehniella, hospedeiro alternativo para produção de Trichogramma. In: Parra JRP, Zucchi RA (eds) Trichogramma e o controle biológico aplicado. FEALQ, Piracicaba, p 121–150

    Google Scholar 

  • Passos LC, Soares MA, Collares LJ, Malagoli I, Desneux N, Carvalho GA (2018) Lethal, sublethal and transgenerational effects of insecticides on Macrolophus basicornis, predator of Tuta absoluta. Entomol Gen 38(2):127–143. https://doi.org/10.1127/entomologia/2018/0744

    Article  Google Scholar 

  • Pérez-Aguilar DA, Soares MA, Passos LC, Martínez AM, Pineda S, Carvalho GA (2018) Lethal and sublethal effects of insecticides on Engytatus varians (Heteroptera: Miridae), a predator of Tuta absoluta (Lepidoptera: Gelechiidae). Ecotoxicology 27:719–728. https://doi.org/10.1007/s10646-018-1954-0

    Article  CAS  Google Scholar 

  • Prabhaker N, Castle SJ, Naranjo SE, Toscano NC, Morse JG (2017) Compatibility of two systemic neonicotinoids, imidacloprid and thiamethoxam, with various natural enemies of agricultural pests. J Econ Entomol 104(3):773–781. https://doi.org/10.1603/EC10362

    Article  CAS  Google Scholar 

  • Püntener W (1981) Manual for field trials in plant protection. Ciba-Geigy, Suiça, Basle

    Google Scholar 

  • Rashidi F, Nouri-Ganbalani G, Imani S (2018) Sublethal effects of some insecticides on functional response of Habrobracon hebetor (Hymneoptera: Braconidae) when reared on two lepidopteran hosts. J Econ Entomol 111(3):1104–1111. https://doi.org/10.1093/jee/toy069

    Article  CAS  Google Scholar 

  • Rimoldi F, Fogel NM, Ronco AE, Schneider MI (2017) Comparative susceptibility of two Neotropical predators, Eriopis connexa and Chrysoperla externa, to acetamiprid and pyriproxyfen: short and long-term effects after egg exposure. Polluto Environ 231(1):1042–1050. https://doi.org/10.1016/j.ecoenv.2013.06.014

    Article  CAS  Google Scholar 

  • Rodrigues ARS, Spindola AF, Torres JB, Siqueira HAA, Colares F (2013) Response of different populations of seven lady beetle species to lambda-cyhalothrin with record of resistance. Ecotoxicol Environ Saf 96:53–60. https://doi.org/10.1016/j.ecoenv.2013.06.014

    Article  CAS  Google Scholar 

  • Rugno GR, Zanardi OZ, Parra JRP, Yamamoto PT (2018) Lethal and sublethal toxicity of insecticides to the lacewing Ceraeochrysa Cubana. Neotrop Entomol. 1–9. https://doi.org/10.1007/s13744-018-0626-3

  • Sciarretta A, Tabilio MR, Lampazzi E, Ceccaroli C, Colacci M, Trematerra P (2018) Analysis of the Mediterranean fruit fly [Ceratitis capitata (Wiedemann)] spatio-temporal distribution in relation to sex and female mating status for precision IPM. PLoS ONE 13(4):e0195097. https://doi.org/10.5281/zenodo.1204939

    Article  Google Scholar 

  • Schmuck R, Candolfi MP, Kleiner R, Mead-Briggs M, Moll M, Kemmeter F, Jans D, Waltersdorfer A, Wilhelmy HA (2000) Laboratory test system for assessing effects of plant protection products on the plant dwelling insect Coccinella septempunctata L. (Coleoptera: Coccinellidae). In: Candolfi MP, Blumel S, Forster R, Bakker FM, Grimm C, Hassan SA, Heimbach U, Mead-Briggs MA, Reber B, Schmuck R, Vogt H (eds) Guidelines to evaluate side-effects of plant protection products to non-target arthropods. IOBC/ WPRS, Reinheim, p 45–56

    Google Scholar 

  • Silva BKDA, Godoy MSD, Lima AGD, Oliveira AKSD, Pastori PL (2017) Toxicity of insecticides used in muskmelon on first-instar larvae of Chrysoperla genanigra Freitas (Neuroptera: Chrysopidae). Revista Caatinga 30(3):662–669. https://doi.org/10.1590/1983-21252017v30n314rc

    Article  Google Scholar 

  • Silva DM, Bueno AF, Andrade K, Stecca CS, Neves MOJ, Moscardi F (2016) Selectivity of organic compounds to the egg parasitoid Telenomus remus Nixon (Hymenoptera: Plastygastridae). Semina Ciênc Agrár 37(1):55–66. https://doi.org/10.5433/1679-0359.2016v37n1p55

    Article  Google Scholar 

  • Silva DM, Bueno AF (2014) Toxicity of organic supplies for the egg parasitoid Telenomus podisi. Cienc Rural 44(1):11–17. https://doi.org/10.1590/S0103-84782014000100003

    Article  Google Scholar 

  • Silva RB, Zanuncio JC, Serrão JE, Lima ER, Figueiredo MLC, Cruz I (2009) Suitability of different artificial diets for development and survival of stages of the predaceous ladybird beetle Eriopis connexa. Phytoparasitica 37:115–123. https://doi.org/10.1007/s12600-008-0015-2

    Article  Google Scholar 

  • Sterk G, Hassan SA, Baillod M, Bakker F, Bigler F, Blümel S, Bogenschutz H, Boller E, Bromand B, Brun J, Calis JNM, Coremans-Pelseneer J, Duso C, Garrido A, Grove A, Heimbach U, Hokkanen H, Jacas J, Lewis G, Moreth L, Polgar L, Roversti L, Samsoe-Peterson L, Sauphanor B, Schaub L, Stäubli A, Tuset JJ, Vainio A, Van de Veire M, Viggiani G, Vinuela E, Vogt H (1999) Results of the seventh joint pesticide testing programme carried out by the IOBC/WPRS-working group ‘Pesticides and beneficial Organisms’. BioControl 44(1):99–117. https://doi.org/10.1023/A:1009959009802

    Article  CAS  Google Scholar 

  • Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–94. https://doi.org/10.1146/annurev.ento.47.091201.145240

    Article  CAS  Google Scholar 

  • Torres AF, Carvalho GA, Santa-Cecília LVC, Moscardini VF (2013) Selectivity of seven insecticides against pupae and adults of Chrysoperla externa (Neuroptera: Chrysopidae). Rev Colomb Entomol 39(1):34–39

    Google Scholar 

  • Tuelher ES, Venzon M, Guedes RNC, Pallini A (2014) Toxicity of organic-coffee-approved products to the southern red mite Oligonychus ilicis and to its predator Iphiseiodes zuluagai. Crop Protection 55:28–34. https://doi.org/10.1016/j.cropro.2013.09.011

    Article  Google Scholar 

  • Varikou K, Garantonakis N, Birouraki A (2019) Exposure of Bombus terrestris L. to three different active ingredients and two application methods for olive pest control. Entomol Gen 39(1):53–60. https://doi.org/10.1127/entomologia/2019/0706

    Article  Google Scholar 

  • Venzon M, Diez-Rodríguez GI, Ferraz CS, Lemos F, Nava DE, Pallin A (2016) Manejo agroecológico das pragas das fruteiras. Informe Agropecuário 37(293):94–103

    Google Scholar 

  • Vogelweith F, Thiéry D (2018) Assessing the non-targeted effect of copper on the leaf arthropods communities in a vineyard. Biol Control 127:94–100. https://doi.org/10.1016/j.biocontrol.2018.08.011

    Article  CAS  Google Scholar 

  • Vogt H, Bidfer F, Brown K, Candolfi MP, Kemmeter F, Kühner C, Moll M, Travis A, Ufer A, Viñuela E, Wladburger M, Waltersdorfer A (2000) Laboratory method to test effects of plant protection products on larvae of Chrysoperla carnea (Neuroptera: Chrysopidae). In: Candolfi MP, Blumel S, Forster R, Bakker FM, Grimm C, Hassan SA, Heimbach U, Mead-Briggs MA, Reber B, Schmuck R, Vogt H (eds) Guidelines to evaluate side-effects of plant protection products to non-target arthropods. IOBC/ WPRS, Reinheim, p 27–44

    Google Scholar 

  • Vogt H, Rumpf S, Wetzel C, Hassan SA (1992) A field method for testing effects of pesticides on the green lacewing Chrysoperla carnea Steph. IOBC/WPRS Bull 15:176–182

    Google Scholar 

  • Yang XF, Fan F, Wang C, Wei GS (2016) Where does Grapholita molesta (Busck)(Lepidoptera: Tortricidae) overwinter in adjacent peach, pear and apple orchards? Bull Entomol Res 106(1):135–140. https://doi.org/10.1017/S0007485315000887

    Article  Google Scholar 

  • Zappalà L, Siscaro G, Biondi A, Mollá O, González-Cabrera J, Urbaneja A (2012) Efficacy of sulphur on Tuta absoluta and its side effects on the predator Nesidiocoris tenuis. J Appl Ent 136:401–40. https://doi.org/10.1111/j.1439-0418.2011.01662.x

    Article  CAS  Google Scholar 

  • Zanuncio JC, Mourão SA, Martínez LC, Wilcken CF, Ramalho FS, Plata-Rueda A, Soares MA, Serrão JE (2016) Toxic effects of the neem oil (Azadirachta indica) formulation on the stink bug predator, Podisus nigrispinus (Heteroptera: Pentatomidae). Sci Rep 6:30261. https://doi.org/10.1038/srep30261

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) – Financial code 001.

Author contributions

FSA, ADG and DEN conceived research. FSA, MR and RAP kept insects rearing. FSA, MR, RAP and JBP conducted experiments. FSA analyzed data. FSA, MR and RAP wrote the manuscript. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franciele Silva De Armas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. The authors agree with the publication of the manuscript in this form.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Armas, F.S., Dionei Grutzmacher, A., Edson Nava, D. et al. Non-target toxicity of nine agrochemicals toward larvae and adults of two generalist predators active in peach orchards. Ecotoxicology 29, 327–339 (2020). https://doi.org/10.1007/s10646-020-02177-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-020-02177-5

Keywords

Navigation