Skip to main content
Log in

Regularities of Conductivity of Aqueous Molecular Solutions

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The work presents the results of measurements of specific conductivity in aqueous solutions of low–molecular alcohols: mono-, di-, tri-, and nonaethylene glycols, glycerol, ethanol, sorbitol, and acetone in the full concentration range. It is shown that not only hydroxyl groups should be considered as the donor–active charge carrier centers in the studied systems, but also oxygen atoms, which is illustrated by a linear dependence of the conductivity maximum on the number of hydration centers. A new method of normalization of specific conductivity is suggested that allows extracting the component corresponding to the charge carrier donor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Yaroslavtsev, A.B., Proton conductivity of inorganic hydrates, Rus. Chem. Rev., 1994, vol. 63, p. 429.

    Article  Google Scholar 

  2. Tarasevich, M.R. and Korchagin, O.V., Rapid diagnostics of characteristics and stability of fuel cells with proton-conducting electrolyte, Russ. J. Electrochem., 2014, vol. 50, p. 737.

    Article  CAS  Google Scholar 

  3. Hu, N., Wu, D., Cross, K.J., and Schaefer, D.W., Structural Basis of the 1H-Nuclear Magnetic Resonance Spectra of Ethanol–Water Solutions Based on Multivariate Curve Resolution Analysis of Mid-Infrared Spectra, Appl. Spectrosc., 2010, vol. 64, p. 337.

    Article  CAS  Google Scholar 

  4. Volkov, V.I., Sanginov, E.A., Pavlov, A.A., Dobrovol’skii, Yu.A., Rebrov, A.I., Anokhin, E.M., Shestakov, S.L., and Maksimychev, A.V., Mechanism of proton conductivity in polyvinyl alcohol-phenolsulfonic acid membranes from 1H and 13C NMR data, Russ. J. Electrochem., 2009, vol. 45, p. 374.

    Article  CAS  Google Scholar 

  5. Sevryugin, V.A., Skirda, V.D., and Skirda, M.V., Exchange processes in aqueous solutions of saccharides, Russ. J. Phys. Chem. A, 1998, vol. 72, p.766.

    Google Scholar 

  6. Billard, R., Cosson, J., Noveiri, S.B., and Pourkazemi, M., Cryopreservation and short-term storage of sturgeon sperm, Aquaculture, 2009, vol. 236, p. 1.

    Article  Google Scholar 

  7. Boryshpolets, S., Dzyuba, B., Rodina, M., Alavi, S.M.H., Gela, D., and Linhart, O., Cryopreservation of sterlet (Acipenser ruthenus) spermatozoa using different cryoprotectants, J. Appl. Ichthyol., 2011, vol. 27, p.1147.

    Article  CAS  Google Scholar 

  8. Seki, S., Kouya, T., Tsuchiya, R., Valdez Jr., D.M., Jin, B., Koshimoto, C., Kasai, M., and Edashige, K., Cryobiological properties of immature zebrafish oocytes assessed by their ability to be fertilized and develop into hatching embryos, Cryobiology, 2011, vol. 62, p. 8.

    Article  Google Scholar 

  9. Zachariassen, K.E. and Kristiansen, E., Ice Nucleation and Antinucleation in Nature, Cryobiology, 2000, vol. 41, p. 257.

    Article  Google Scholar 

  10. Oswal, S.L. and Desai, H.S., Studies of viscosity and excess molar volume of binary mixtures: 2. Butylamine+1-alkanol mixtures at 303.15 and 313.15 K, Fluid Phase Equilib., 1999, vol. 161, p. 191.

    Article  Google Scholar 

  11. Chen, C., Li, W., Song, Y., and Yang, J., Molecular dynamics simulation studies of cryoprotective agent solutions: the relation between melting temperature and the ratio of hydrogen bonding acceptor to donor number, Mol. Phys., 2009, vol. 107, p. 673.

    Article  CAS  Google Scholar 

  12. Murthy, S.S.N., Experimental Study of the Dynamics of Water and the Phase behavior of the Supercooled Aqueous Solutions of Propylene Glycol, Glycerol, Poly(ethylene glycol)s, and Poly(vinylpyrrolidone), J. Phys. Chem. B, 2000, vol. 104, p. 6955.

    Article  CAS  Google Scholar 

  13. Artemkina, Y.M., Shcherbakov, V.V., and Korotkova, E.N., High-frequency conductivity of mixtures of water with methanol, ethanol, and propanol. Russ. J. Electrochem., 2015, vol. 51, p. 180.

    Article  CAS  Google Scholar 

  14. Petterson, K.A., Stein, R.S., Drake, M.D., and Roberts, J.D., An NMR investigation of the importance of intramolecular hydrogen bonding in determining the conformational equilibrium of ethylene glycol in solution. Magn. Reson. Chem., 2005, vol. 43, p. 225.

    Article  CAS  Google Scholar 

  15. Price, W.S., Ide, H., and Arata, Y., Solution Dynamics in Aqueous Monohydric Alcohol Systems, J. Phys. Chem. A, 2003, vol. 107, p. 4784.

    Article  CAS  Google Scholar 

  16. Oldenhof, H., Friedel, K., Sieme, H., Glasmacher, B., and Wolkers, W.F., Membrane permeability parameters for freezing of stallion sperm as determined by Fourier transform infrared spectroscopy, Cryobiology, 2010, vol. 61, p. 115.

    Article  CAS  Google Scholar 

  17. Ghosh, B.D. and Ritchie, J.E., Effect of Polymer Structure on Ion Transport in an Anhydrous Proton Conducting Electrolyte, Chem. Mater., 2010, vol. 22, p. 1483.

    Article  CAS  Google Scholar 

  18. Sun, C. and Ritchie, J.E., Star-Shaped MePEGn Polymers as H+ Conducting Electrolytes, J. Phys. Chem. B, 2011, vol. 115, p. 8381.

    Article  CAS  Google Scholar 

  19. Chang, H.Y. and Lin, C.W., Proton Conducting Membranes Based on PEG/SiO2 Nanocomposites for Direct Methanol Fuel Cells, J. Membr. Sci., 2003, vol. 218, p. 295.

    Article  CAS  Google Scholar 

  20. Harris, J.M. and Chess, R.B., Effect of Pegylation on Pharmaceuticals, Nat. Rev. Drug Discov., 2003, vol. 2, p. 214.

    Article  CAS  Google Scholar 

  21. Kirillov, A.D., Kakurkin, N.P., and Shcherbakov, V.V., Electroconductivity of the calcium oxide-ethylene glycol–water system, Russ. J. Electrochem., 2007, vol. 43, p. 114.

    Article  CAS  Google Scholar 

  22. Tsierkezos, N.G. and Molinou, I.E., Transference Numbers, Conductance and Viscosity Studies of Copper Sulfate in Ethylene Glycol–Water Mixtures at 20°C, Z. Phys. Chem., 2006, vol. 216, p. 961.

    Google Scholar 

  23. Fosbol, P.L., Thomsen, K., and Stenby, E.H., Modeling of the Mixed Solvent Electrolyte System CO2−Na2CO3−NaHCO3−Monoethylene Glycol–Water, Ind. Eng. Chem. Res., 2009, vol. 48, p. 4565.

    Article  Google Scholar 

  24. Capuano, F., Vergara, A., Paduano, L., Annunziata, O., and Sartorio, R., Electrostatic and Excluded Volume Effects on the Transport of Electrolytes in Poly(Ethylene Glycol)–Water Mixed Solvents, J. Phys. Chem. B, 2003, vol. 107, p. 12363.

    Article  Google Scholar 

  25. Chung, J.K. and Consta, S., Release Mechanisms of Poly(Ethylene Glycol) Macroions from Aqueous Charged Nanodroplets. J. Phys. Chem. B, 2012, vol. 116, p. 5777.

    Article  CAS  Google Scholar 

  26. Ennari, J., Neelov, I., and Sunholm, F., Modelling of Gas Transport Properties of Polymer Electrolytes Containing Various Amounts of Water, Polymer, 2004, vol. 45, p. 4171.

    Article  Google Scholar 

  27. Sesta, B. and Berardelli, M.L., Alkali-Nitrate Interactions in Water–Ethylene–Glycol Mixtures. Conductometric Measurements at 25°C, Electrochim. Acta, 1972, vol. 17, p. 915.

    Article  CAS  Google Scholar 

  28. Nowak-Woźny, D. and Maczka, T., The DC conduction mechanism of Ethylene Glycol Water solutions, J. Electr. Eng., 2007, vol. 58, p. 55.

    Google Scholar 

  29. Erdey-Gruz, T. Transport phenomena in aqueous solutions, Wiley, New York, 1974, p. 30.

    Google Scholar 

  30. Izmailov, N.A., Electrokhimiya rastvorov (Electrochemistry of solutions), Moscow, Khimiya, 1976.

  31. Sevryugin, V.A., Loskutov. V.V., and Kosova, G.N., Regularities of conductivity of aqueous glycerol solutions, Izvestiya UNTs RAN, 2014, no. 3, p. 40.

  32. Davletbaeva, I.M., Emelina, O.Yu., Vorotyntsev, I.V., Davletbaev, R.S., Grebennikova, E.S., Petukhov, A.N., Akhmetshina, A.I., Sazanova, T.S., and Loskutov, V.V., Synthesis and properties of novel polyurethanes based on amino ethers of boric acid for gas separation membranes, RSC Adv., 2015, vol. 5, p. 65674.

    Article  CAS  Google Scholar 

  33. Samoilov, O.Ya., Structure of Aqueous Electrolyte Solutions and the Hydration of Ions, Consultants Bureau, New York, 1965.

    Google Scholar 

  34. Sevriugin, V.A., Loskutov, V.V., and Zhuravlyova, N.E., Concentration Dependences of Solvent Self-Diffusion Coefficients in Solutions and Heterogeneous Systems, Appl. Magn. Reson., 2005, vol. 29, p. 523.

    Article  Google Scholar 

  35. Sevryugin, V.A., Azancheev, N.M., and Kosova, G.N., Translational Mobility of Components and Structure of Water–Ethanol Solutions, Appl. Magn. Reson., 2018, vol. 49, p. 357.

    Article  CAS  Google Scholar 

  36. Ohtaki, H. and Radnai, T., Structure and Dynamics of Hydrated Ions, Chem. Rev., 1993, vol. 93, p. 1157.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Sevryugin or V. V. Loskutov.

Ethics declarations

The authors declare the absence of any conflict of interest.

Additional information

Translated by M. Ehrenburg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevryugin, V.A., Loskutov, V.V. & Kosova, G.N. Regularities of Conductivity of Aqueous Molecular Solutions. Russ J Electrochem 55, 1237–1245 (2019). https://doi.org/10.1134/S1023193519120152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519120152

Keywords:

Navigation