Skip to main content
Log in

De-Alloyed PtCu/C Catalysts of Oxygen Electroreduction

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Platinum-containing bimetallic nanoparticles manifest high functional characteristics as electrocatalysts. To use PtCu/C catalysts in low-temperature fuel cells, it is necessary to minimize selective copper dissolution, as copper cations can pollute the polymer membrane and decrease its proton conductivity. The work determines the composition, measures the electrochemically active surface area, and studies the electrochemical behavior of PtCu/C catalysts containing nanoparticles with a “core–shell” structure in the initial state (as-prepared) and after pretreatment in solutions of different acids. The comparative determination of catalyst activity in an electrochemical cell and their testing in a membrane-electrode assembly of fuel cells showed that pretreated PtCu/C materials with a much better stability as compared to Pt/C were also noninferior to the latter as regards their activity in the oxygen electroreduction reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. The term of “weakly bound” copper in this context is not necessarily related to a particular chemical state of individual copper atoms. It only reflects the fact that some fraction of copper atoms passes into the solution in the form of Cu2+ cations, while the rest of them remain in bimetallic nanoparticles.

REFERENCES

  1. Crawley, G., Proton exchange membrane (PEM) fuel cells: opening doors to fuel cell commercialization, Fuel Cell Today, 2006, p. 1.

    Google Scholar 

  2. O’Hayre, R.P., Fuel Cell Fundamentals, 2nd ed., New York, 2009, p. 576.

    Google Scholar 

  3. Kongkanand, A. and Mathias, M.F., The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells, J. Phys. Chem. Lett., 2016, vol. 7, p. 1127.

    Article  CAS  PubMed  Google Scholar 

  4. Yaroslavtsev, A.B., Dobrovolsky, Yu.A., Shaglaeva, N.S., Frolova, L.A., Gerasimova, E.V., and Sanginov, E.A., Nanostructured materials for low-temperature fuel cells, Russ. Chem. Rev., 2012, vol. 81, p. 191.

    Article  CAS  Google Scholar 

  5. Sui, Sh., Wang, X., Su, Y., Zhou, S., and Riffat, Ch., A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells, J. Mater. Chem. A, 2017, vol. 5, p. 1808.

    Article  CAS  Google Scholar 

  6. Thompsett, D., Catalysts for the proton exchange membrane fuel cell in Handbook of Fuel Cells.Fundamentals, Technology and Applications, New York, 2003.

    Google Scholar 

  7. Holton, O.T. and Stevenson, J.W., The Role of Platinum in Proton Exchange Membrane Fuel Cells, Platinum Met. Rev., 2013, vol. 57, p. 259.

    Article  CAS  Google Scholar 

  8. Banham, D.W.H. and Ye, S., Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective, ACS Energy Lett., 2017, vol. 2, p. 628.

    Article  CAS  Google Scholar 

  9. Shao, M., Chang, Q., Dodelet, J-P., and Chenitz, R., Recent Advances in Electrocatalysts for Oxygen Reduction Reaction, Chem. Rev., 2016, vol. 116, p. 3594.

    Article  CAS  PubMed  Google Scholar 

  10. Lv, H., Li, D., Strmcnik, D., Paulikas, A.P., Markovic, N.M., and Stamenkovic, V.R., Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction, Nano Energy, 2016, vol. 29, p. 149.

    Article  CAS  Google Scholar 

  11. Wang, J., Li, B., Yang, D., Lv, H., Zhang, C., Preparation optimization and single cell application of PtNi/C octahedral catalyst with enhanced ORR performance, Electrochimica Acta, 2018, vol. 288, p. 126.

    Article  CAS  Google Scholar 

  12. Litster, S., PEM fuel cell electrodes, J. Power Sources, 2004, vol. 130, p. 61.

    Article  CAS  Google Scholar 

  13. Gasteiger, H.A. Fuel cell related catalysis in Handbook of heterogeneous catalysis, New York, 2008, p. 3081.

  14. Hoogers, G., Fuel Cell Technology Handbook, CRC Press LLC, 2003, p. 335.

    Google Scholar 

  15. Xu, Zh., Zhang, H., Liu, S., Zhang, B., Zhong, H., and Su, D., Facile synthesis of supported Pt–Cu nanoparticles with surface enriched Pt as highly active cathode catalyst for proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 2012, vol. 37, p. 17978.

    Article  CAS  Google Scholar 

  16. Guterman, V.E., Lastovina, T.A., Belenov, S.V., et al. PtM/C (M = Ni, Cu, or Ag) Electrocatalysts: Effects of Alloying Components on Morphology and Electrochemically Active Surface Areas, J. Solid State Electrochem., 2014, vol. 18, p. 1307.

    Article  CAS  Google Scholar 

  17. Singh, R.N., Awasthi, R., and Sharma, C.S., Review: An overview of recent development of platinum based cathode materials for direct methanol fuel cells, Int. J. Electrochem. Sci., 2014, vol. 9, p. 5607.

    Google Scholar 

  18. Neergat, M. and Rahul, R., Unsupported Cu–Pt Core–Shell Nanoparticles: Oxygen Reduction Reaction (ORR) Catalyst with Better Activity and Reduced Precious Metal Content, J. Electrochem. Soc., 2012, vol. 159, p. F234.

    Article  CAS  Google Scholar 

  19. Antolini, E., Platinum-based ternary catalysts for low temperature fuel cells Part II. Electrochemical properties, Appl. Catal., B, 2007, vol. 87, p. 337.

    Article  CAS  Google Scholar 

  20. Stamenkovic, V.R., Mun, B.S., Arenz, M., May-rhofer, K.J.J., Lucas, C.A., Wang, G., Ross P.N., Markovic, N.M., Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces, Nat. Mater., 2007, vol. 6, p. 241.

    Article  CAS  PubMed  Google Scholar 

  21. Jung, N., Chung, D.Y., Ryu, J., Yoo, S.J., and Sung, Y., Pt-based nanoarchitecture and catalyst design for fuel cell applications, Nano Today, 2014, vol. 9, p. 433.

    Article  CAS  Google Scholar 

  22. Paulus, U.A., Wokaun, A., and Scherer, G.G., Oxygen Reduction on Carbon-Supported Pt–Ni and Pt–Co Alloy Catalysts, J. Phys. Chem. B, 2002, vol. 106, p. 4181.

    Article  CAS  Google Scholar 

  23. Stamenkovic, V., Schmidt, T.J., Ross, P.N., and Markovic, N.M., Surface Composition Effects in Electrocatalysis:  Kinetics of Oxygen Reduction on Well-Defined Pt3Ni and Pt3Co Alloy Surfaces, J. Phys. Chem. B, 2002, vol. 106, p. 11970.

    Article  CAS  Google Scholar 

  24. Travitsky, N., Ripenbein, T., Golodnitsky, D., Rosenberg, Y., Burshtei, L., and Peled, E., Pt-, PtNi- and PtCo-supported catalysts for oxygen reduction in PEM fuel cells, J. Power Sources, 2006, vol. 161, p. 782.

    Article  CAS  Google Scholar 

  25. Strasser, P., Free Electrons to Molecular Bonds and Back: Closing the Energetic Oxygen Reduction (ORR)−Oxygen Evolution (OER) Cycle Using Core–Shell Nanoelectrocatalysts, Acc. Chem. Res., 2016, vol. 49, p. 2658.

    Article  CAS  PubMed  Google Scholar 

  26. Mani, P., Srivastava, R., and Strasser, P., Dealloyed binary PtM3 (M = Cu Co, Ni) and ternary PtNi3M (M = Cu, Co, Fe, Cr), J. Power Sources, 2011, vol. 196, p. 666.

    Article  CAS  Google Scholar 

  27. Oezaslan, M. and Strasser, P., Activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell, J. Power Sources, 2011, vol. 196, p. 5240.

    Article  CAS  Google Scholar 

  28. Nguyen, M.T., Wakabayashi, R.H., Yang, M., Abruna, H.D., and Di Salvo, F.J., Synthesis of carbon supported ordered tetragonal pseudo-ternary Pt2M'M'' (M = Fe Co, Ni) nanoparticles and their activity for oxygen reduction reaction, J. Power Sources, 2015, vol. 280, p. 459.

    Article  CAS  Google Scholar 

  29. Hyun, K., Lee, J.H., Yoon, C.W., and Kwon, Y., The effect of platinum based bimetallic electrocatalysts on oxygen reduction reaction of proton exchange membrane fuel cells, Int. J. Electrochem. Sci., 2013, vol. 8, p. 11752.

    CAS  Google Scholar 

  30. Gasteiger, H.A., Kocha, Sh.S., Sompalli, B., and Wagner, F.T., Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Appl. Catal., B, 2005, vol. 56, p. 9.

    Article  CAS  Google Scholar 

  31. Oezaslan, M., Hasche, F., and Strasser, P., PtCu3, PtCu and Pt3Cu alloy nanoparticle electrocatalysts for oxygen reduction reaction in alkaline and acidic media, J. Electrochem. Soc., 2012, vol. 159, p. B444.

    Article  CAS  Google Scholar 

  32. Neyerlin, K.C., Srivastava, R., Yu, Ch., and Strasser, P., Electrochemical activity and stability of dealloyed Pt–Cu and Pt–Cu–Co electrocatalysts for the oxygen reduction reaction (ORR), J. Power Sources, 2009, vol. 186, p. 261.

    Article  CAS  Google Scholar 

  33. Antolini, E., Alloy intermetallic compounds: Effect of the ordering on the electrocatalytic activity for oxygen reduction and the stability of low temperature fuel cell catalysts, Applied Catal., B, 2017, vol. 217, p. 201.

    Article  CAS  Google Scholar 

  34. Sarkar, A. and Manthiram, A., Synthesis of Pt@Cu Core–Shell Nanoparticles by Galvanic Displacement of Cu by Pt4+ Ions and Their Application as Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells, J. Phys. Chem. C, 2010, vol. 114, p. 4725.

    Article  CAS  Google Scholar 

  35. Guterman, V.E., Belenov, S.V., Alekseenko, A.A., Tabachkova, N.Yu., and Volochaev, V.A., The relationship between activity and stability of deposited platinum-carbon electrocatalysts, Russ. J. Electrochem., 2017, vol. 53, p. 531.

    Article  CAS  Google Scholar 

  36. Zhu, H., Li, X., and Wang, F., Synthesis and characterization of Cu@Pt/C core–shell structured catalysts for proton exchange membrane fuel cell, Int. J. Hydrogen Energy, 2011, vol. 36, p. 9151.

    Article  CAS  Google Scholar 

  37. Yu, Z., Zhang, J., and Liu, Z., Comparison between Dealloyed PtCo3 and PtCu3 Cathode Catalysts for Proton Exchange Membrane Fuel Cells, J. Phys. Chem. C, 2012, vol. 116, p. 19877.

    Article  CAS  Google Scholar 

  38. Koh, S., Toney, M.F., and Strasser, P., Activity–stability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR), Electrochim. Acta, 2007, vol. 52, p. 2765.

    Article  CAS  Google Scholar 

  39. Stamenkovic, V.R., Mun, S.B., Mayrhofer, K.J.J. Ross, Ph.N., and Markovic, N.M., Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt‑skin versus Pt-skeleton surfaces, J. Am. Chem. Soc., 2006, vol. 128, p. 8813.

    Article  CAS  PubMed  Google Scholar 

  40. Oezaslan, M., Hasché, F., and Strasser, P., Pt-based core–shell catalyst architectures for oxygen fuel cell electrodes, J. Phys. Chem. Lett., 2013, vol. 4, p. 3273.

    Article  CAS  Google Scholar 

  41. Kuhl, S. and Strasser, P. Oxygen Electrocatalysis on Dealloyed Pt Nanocatalysts, Top Catal., 2016, vol. 59, p. 1628.

    Article  CAS  Google Scholar 

  42. Alekseenko, A.A., Belenov, S.V., Men’shchikov, V.S., and Guterman, V.E., Pt(Cu)/C Electrocatalysts with Low Platinum Content, Russ. J. Electrochem., 2018, vol. 54, p. 415.

    Article  CAS  Google Scholar 

  43. Alekseenko, A.A., Guterman, V.E., Belenov, S.V., Menshikov, V.S., Tabachkova, N.Yu., Safronenko, O.I., and Moguchikh, E.A., Pt/C electrocatalysts based on the nanoparticles with the gradient structure, Int. J. Hydrogen Energy, 2018, vol. 43, p. 3676.

    Article  CAS  Google Scholar 

  44. Volochaev, V.A., Belenov, S.V., Alekseenko, A.A., and Guterman, V.E., On the possibilities of recognizing the architecture of binary Pt–M nanoparticles, Nanotechnol. Russ., 2017, vol. 12, nos. 5–6, p. 227.

    Article  CAS  Google Scholar 

  45. Kirakosyan, S.A., Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Tabachkova, N.Yu., Effect of co atmosphere on morphology and electrochemically active surface area in the synthesis of Pt/C and PtAg/C electrocatalysts, Nanotechnol. Russ., 2016, vol. 11, p. 287.

    Article  CAS  Google Scholar 

  46. Shinozaki, K., Zack, J.W., Pylypenko, S., Pivovar, B.S., and Kocha, S.S., Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: II. Influence of ink formulation, catalyst layer uniformity and thickness, J. Electrochem. Soc., 2015, vol. 162, p. F1384.

    Article  CAS  Google Scholar 

  47. Gusev, A.I., Nanomaterialy, nanostruktury, nanotekhnologii (Nanomaterials, Nanostructures, Nanotechnologies), Moscow: FIZMATLIT, 2009.

  48. Guterman, V.E., Belenov, S.V., Krikov, V.V., Vysochina, L.L., Yohannes, W., Tabachkova, N.Yu., and Balakshina, E.N., Reasons for the differences in the kinetics of thermal oxidation of Pt/C nanostructured materials, J. Phys. Chem., C, 2014, vol. 118, p. 23835.

    Article  CAS  Google Scholar 

  49. Leontyev, I.N., Leontyeva, D.V., Kuriganova, A.B., Popov, Y.V., Maslova, O.A., Glebova, N.V., and Smirnova, N.V., Characterization of the electrocatalytic activity of carbon-supported platinum-based catalysts by thermal gravimetric analysis, Mendeleev Commun., 2015, vol. 25, p. 468.

    Article  CAS  Google Scholar 

  50. Van der Vliet, D., Strmcnik, D.S., Wang, C., Stamenkovic, V.R., Markovic, N.M., and Koper, M.T.M., On the importance of correcting for the uncompensated Ohmic resistance in model experiments of the oxygen reduction reaction, J. Electroanal. Chem., 2010, vol. 647, p. 29.

    Article  CAS  Google Scholar 

  51. Wang, Y., Zhou, H., Sun, P., and Chen, T., Exceptional methanol electro-oxidation activity by bimetallic concave and dendritic Pt–Cu nanocrystals catalysts, J. Power Sources, 2014, vol. 245, p. 663.

    Article  CAS  Google Scholar 

  52. Moguchikh, E.A., Alekseenko, A.A., Guterman, V.E., Novikovsky, N.M., Tabachkova, N.Yu., and Menshchikov, V.S., Effect of the Composition and Structure of Pt(Cu)/C Electrocatalysts on Their Stability under Different Stress Test Conditions, Russ. J. Electrochem., 2018, vol. 54, p. 979.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Center for Collective Usage of International Research Center of South Federal University and senior researcher T.A. Lastovin for help in thermogravimetric studies.

Funding

The work is supported by the Russian Scientific Foundation (project no. 16-19-10115). The part of work carried out by Gerasimova E.V. was performed in accordance with the state task, state registration no. АААА-19-119061890019-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Alekseenko.

Ethics declarations

The authors declare the absence of any conflict of interest.

Additional information

Translated by M. Ehrenburg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirakosyan, S.A., Alekseenko, A.A., Guterman, V.E. et al. De-Alloyed PtCu/C Catalysts of Oxygen Electroreduction. Russ J Electrochem 55, 1258–1268 (2019). https://doi.org/10.1134/S1023193519120085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519120085

Keywords:

Navigation