Skip to main content
Log in

Transport Properties of MF-4SK Membranes Doped with Sulfonated Zirconia

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Composite materials based on homogeneous perfluorinated MF-4SK cation-exchange membranes and sulfonated zirconia are obtained by in situ and casting methods. Their transport properties and gas-permeability are studied. The introduction of sulfonated zirconia leads to increase the room-temperature conductivity of membranes obtained by the in situ and casting methods more than 1.5- and 4-fold, respectively. For composite membranes synthesized by the in situ and casting methods, the transport numbers of anions that characterize their undesired transport decrease more than 1.5-fold (from 0.026 to 0.020 and from 0.020 to 0.014, respectively). For samples based on MF-4SK membranes and zirconia, the considerable (more than 3-fold) decrease in hydrogen permeability is observed. The differences in the observed values of water uptake, conductivity, and interdiffusion coefficients in composite membranes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Mauritz, K. and Moore, R., State of understanding of Nafion, Chem. Rev., 2004, vol. 104, p. 4535.

    Article  CAS  Google Scholar 

  2. Apel, P.Yu., Bobreshova, O.V., Volkov, A.V., Volkov, V.V., Nikonenko, V.V., Stenina, I.A., Filippov, A.N., Yampolskii, Yu.P., and Yaroslavtsev, A.B., Prospects of membrane science development, Membr. Membr. Technol., 2019, vol. 1, p. 45.

  3. Park, J.-S., Shin, M.-S., and Kim, Ch.-S., Proton exchange membranes for fuel cell operation at low relative humidity and intermediate temperature: An updated review, Curr. Opin. Electrochem., 2017, vol. 5, p. 43.

    Article  CAS  Google Scholar 

  4. Bose, S., Kuila, T., Nguyen, T.X.H., Kim, N.H., Lau, K.-T., and Lee, J.H., Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges, Progr. Polym. Sci., 2011, vol. 36, p. 813.

    Article  CAS  Google Scholar 

  5. Ji, M. and Wei, Z., A review of water management in polymer electrolyte membrane fuel cells, Energies, 2009, vol. 2, p. 1057.

    Article  CAS  Google Scholar 

  6. Shao, Yu., Yin, G., Wang, Zh., and Gao, Yu., Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges, J. Power Sources, 2007, vol. 167, p. 235.

    Article  CAS  Google Scholar 

  7. Mugtasimova, K. R., Melnikov, A.P., Galitskaya, E.A., Kashin, A.M., Dobrovolskiy, Yu.A., Don, G.M., Likhomanov, V.S., Sivak, A.V., and Sinitsyn, V.V., Fabrication of Aquivion-type membranes and optimization of their elastic and transport characteristics, Ionics, 2018, vol. 24, p. 3897.

    Article  CAS  Google Scholar 

  8. Yaroslavtsev, A.B., Stenina, I.A., Kulova, T.L., Skundin, A.M., and Desyatov, A.V., Nanomaterials for electrical energy storage, in Comprehensive Nanoscience and Nanotechnology, Second edition, Andrews, D.L., Lipson, R.H., and Nann, T., Eds., Vol. 5 Application of Nanoscience, Bradshaw, D.S., Ed., Amsterdam: Elsevier, 2019, p. 165.

  9. Tripathi, B.P. and Shahi, V.K., Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications, Progr. Polym. Sci., 2011, vol. 36, p. 945.

    Article  CAS  Google Scholar 

  10. Yaroslavtsev, A.B. and Yampolskii, Yu.P., Hybrid membranes containing inorganic nanoparticles, Mendeleev Commun., 2014, vol. 24, p. 319.

    Article  CAS  Google Scholar 

  11. Bakangura, E., Wu, L., Ge, L., Yang, Zh., and Xu, T., Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives, Progr. Polym. Sci., 2016, vol. 57, p. 103.

    Article  CAS  Google Scholar 

  12. The Chemistry of Membranes Used in Fuel Cells: Degradation and Stabilization, Schlick, Sh. Ed., Hoboken: Wiley, 2018.

  13. Shalimov, A.S., Novikova, S.A., Stenina, I.A., and Yaroslavtsev A.B., Ion transport in MF-4SK cation-exchange membranes modified with acid zirconium phosphate, Russ. J. Inorg. Chem. 2006, vol. 51, p. 700.

    Article  Google Scholar 

  14. Alberti, G., Casciola, M., Capitani, D., Donnadio, A., Narducci, R., Pica, M., and Sganappa, M., Novel Nafion–zirconium phosphate nanocomposite membranes with enhanced stability of proton conductivity at medium temperature and high relative humidity, Electrochim. Acta, 2007, vol. 52, p. 8125.

    Article  CAS  Google Scholar 

  15. Amjadi, M., Rowshanzamir, S., Peighambardoust, S.J., and Sedghi, S., Preparation, characterization and cell performance of durable Nafion/SiO2 hybrid membrane for high-temperature polymeric fuel cells, J. Power Sources, 2012, vol. 210, p. 350.

    Article  CAS  Google Scholar 

  16. Amjadi, M., Rowshanzamir, S., Peighambardoust, S.J., Hosseini, M.G., and Eikani, M.H., Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells, Int. J. Hydrogen Energy, 2010, vol. 35, p. 9252.

    Article  CAS  Google Scholar 

  17. Ketpang, K., Son, B., Lee, D., and Shanmugam, S., Porous zirconium oxide nanotube modified Nafion composite membrane for polymer electrolyte membrane fuel cells operated under dry conditions, J. Membr. Sci., 2015, vol. 488, p. 154.

    Article  CAS  Google Scholar 

  18. Taghizadeh, M.T. and Vatanparast, M., Ultrasonic-assisted synthesis of ZrO2 nanoparticles and their application to improve the chemical stability of Nafion membrane in proton exchange membrane (PEM) fuel cells, J. Colloid Interface Sci., 2016, vol. 483, p. 1.

    Article  CAS  Google Scholar 

  19. Siddiqui, S.I. and Chaudhry, S.A. Organic/inorganic and sulfonated zirconia nanocomposite membranes for proton-exchange membrane fuel cells, in Organic-Inorganic Composite Polymer Electrolyte Membranes. Preparation, Properties, and Fuel Cell Applications, Inamuddin, M.A. and Asiri, A.M., Eds., Springer, 2017, p. 219.

    Google Scholar 

  20. Zhai, Y., Zhang, H., Hu, J., and Yi, B., Preparation and characterization of sulfonated zirconia (\({\text{SO}}_{{\text{4}}}^{{{\text{2}} - }}\)/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity, J. Membr. Sci., 2006, vol. 280, p. 148.

    Article  CAS  Google Scholar 

  21. Kim, T., Choi, Y.-W., Kim, C.-S., Yang, T.-H., and Kim, M.-N., Sulfonated poly(arylene ether sulfone) membrane containing sulfonated zirconia for high-temperature operation of PEMFCs, J. Mater. Chem., 2011, vol. 21, p. 7612.

    Article  CAS  Google Scholar 

  22. Bonis, C., Cozzi, D., Mecheri, B., D’Epifanio, A., Rainer, A., De Porcellinis, D., and Licoccia, S., Effect of filler surface functionalization on the performance of Nafion/titanium oxide composite membranes, Electrochim. Acta, 2014, vol. 147, p. 418.

    Article  Google Scholar 

  23. D’Epifanio, A., Navarra, M.A., Weise, F.Ch., Mecheri, B., Farrington, J., Licoccia, S., and Greenbaum, S., Composite Nafion/sulfonated zirconia membranes: Effect of the filler surface properties on proton transport characteristics, Chem. Mater., 2010, vol. 22, p. 813.

    Article  Google Scholar 

  24. Siracusano, S., Baglio, V., Nicoter, I., Mazzapiod, L., Aricò, A.S., Panero, S., and Navarra, M.A., Sulfonated titania as additive in Nafion membranes for water electrolysis applications, Int. J. Hydrogen Energy, 2017, vol. 42, p. 27851.

    Article  CAS  Google Scholar 

  25. Wu, Zh., Sun, G., Jin, W., Hou, H., Wang, S., and Xin, Q., Nafion® and nano-size TiO2\({\text{SO}}_{{\text{4}}}^{{{\text{2}} - }}\) solid superacid composite membrane for direct methanol fuel cell, J. Membr. Sci., 2008, vol. 313, p. 336.

    Article  CAS  Google Scholar 

  26. Sayeed, M.D.A., Kim, H.J., Park, Y., Gopalan, A.I., Kim, Y.H., Lee, K.-P., and Choi, S.-J., Sulfonated titania–silica reinforced Nafion® nanocomposite membranes for proton exchange membrane fuel cells, J. Nanosci. Nanotechnol., 2015, vol. 15, p. 7054.

    Article  Google Scholar 

  27. Yurova, P.A., Stenina, I.A., and Yaroslavtsev, A.B., A comparative study of the transport properties of homogeneous and heterogeneous cation-exchange membranes doped with zirconia modified with phosphoric acid groups, Pet. Chem., 2018, vol. 58, p. 1144.

    Article  CAS  Google Scholar 

  28. Liu, L., Chen, W., and Li, Yu., A statistical study of proton conduction in Nafion®-based composite membranes: Prediction, filler selection and fabrication methods, J. Membr. Sci., 2018, vol. 549, p. 393.

    Article  CAS  Google Scholar 

  29. Stenina, I.A., Voropaeva, E.Yu., Veresov, A.G., Kapustin, G.I., and Yaroslavtsev, A.B., Effect of precipitation pH and heat treatment on the properties of hydrous zirconium dioxide, Russ. J. Inorg. Chem., 2008, vol. 53, p. 350.

    Article  Google Scholar 

  30. Yaroslavtsev, A.B., Karavanova, Yu.A., and Safronova, E.Yu., Ionic conductivity of hybrid membranes, Pet. Chem., 2011, vol. 51, p. 473.

    Article  CAS  Google Scholar 

  31. Golubenko, D.V., Yurova, P.A., Karavanova, Yu.A., and Stenina, I.A., Surface modification of zirconia with acid groups, Inorg. Mater., 2017, vol. 53, p. 1053.

    Article  CAS  Google Scholar 

  32. Filippov, A.N., Safronova, E.Y., and Yaroslavtsev, A.B., Theoretical and experimental investigation of diffusion permeability of hybrid MF-4SC membranes with silica nanoparticles, J. Membr. Sci., 2014, vol. 471, p. 110.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Scientific Foundation (project no. 17-79-30054) and carried out using shared experimental facilities supported by IGIC RAS state assignment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Stenina or A. B. Yaroslavtsev.

Ethics declarations

The authors have no conflict of interests.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurova, P.A., Aladysheva, U.S., Stenina, I.A. et al. Transport Properties of MF-4SK Membranes Doped with Sulfonated Zirconia. Russ J Electrochem 55, 1292–1298 (2019). https://doi.org/10.1134/S1023193519110156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519110156

Keywords:

Navigation