Skip to main content
Log in

Electrochemical Activity of Metal-Ion Exchanger Nanocomposites

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electroreduction of oxygen on thin-film metal–polymer nanocomposites that differ in the metal (Ag, Cu, Pd), content, particle size of the metal component, and ionic form of the Lewatit K2620 matrix (H+, Na+) was studied. The limiting oxygen diffusion current and effective number of electrons involved in oxygen electroreduction were determined. The limiting current and the number of electrons increased with the content of metal nanoparticles and transition to larger nanoparticles. The oxygen electroreduction occurs by the four-electron mechanism, whereby the hydrogen peroxide intermediate product does not accumulate, and oxygen is reduced directly to water molecules. The electrochemical reduction of the metal oxidation products and hydrogen evolution can be observed depending on the ionic form of the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kravchenko, T.A., Polyansky, L.N., Kalinichev, A.I., and Konev, D.V., Nanokompozity metall-ionoobmennik (Metal-Ion Exchanger Nanocomposites), Moscow: Nauka, 2009.

  2. Kravchenko, T.A., Zolotukhina, E.V., Chaika, M.Yu., and Yaroslavtsev, A.B., Elektrokhimiya nanokompozitov metall-ionoobmennik (Electrochemistry of Metal-Ion Exchanger Nanocomposites), Moscow: Nauka, 2013.

  3. Kravchenko, T.A., Khorolskaya, S.V., Polyanskiy, L.N., and Kipriyanova, E.S., Investigation of the mass transfer process in metal-ion exchanger nanocomposites, Nanocomposites: Synthesis, Characterization and Application, Wang, X., Ed., New York: Nova Science, 2013, pp. 329–348.

    Google Scholar 

  4. Zolotukhina, E.V. and Kravchenko, T.A., Synthesis and kinetics of growth of metal nanoparticles inside ion-exchange polymers, Electrochim. Acta, 2011, vol. 56, p. 3597.

    Article  CAS  Google Scholar 

  5. Macanás, J., Ruiz, P., Alonso, A., Muñoz, M., and Muraviev, D.N., Ion exchange-assisted synthesis of polymer stabilized metal nanoparticles, Ion Exchange and Solvent Extraction. A Series of Advances, Sengupta, A.K., Ed., London: CRC, 2011, vol. 20, p. 1.

    Google Scholar 

  6. Podlovchenko, B.I. and Andreev, V.N., Electrocatalysis on polymer-modified electrodes, Russ. Chem. Rev., 2002, vol. 71, no. 10, p. 837.

    Article  CAS  Google Scholar 

  7. Sun, Y.-P., Atorngitjawat, P., Lin, Y., Liu, P., Pathak, P., Bandara, J., Elgin, D., and Zhang, M., Nanoscale cavities in ionomer membrane for the formation of nanoparticles, J. Membr. Sci., 2004, vol. 245, p. 211.

    Article  CAS  Google Scholar 

  8. Corain, B., Zecca, M., Canton, P., and Centomo, P., Synthesis and catalytic activity of metal nanoclusters inside functional resins: an endeavour lasting 15 years, Philos. Trans. R. Soc., A, 2010, vol. 368, p. 1495.

  9. Patra, S., Sen, D., Pandey, A.K., Agarwal, Ch., Ramagiri, Sh.V., Bellare, J.R., Mazumder, S., and Goswami, A., Local conditions influencing in situ formation of different shaped silver nanostructures and subsequent reorganizations in ionomer membrane, J. Phys. Chem. C, 2013, vol. 117, p. 12026.

    Article  CAS  Google Scholar 

  10. Bastos-Arrieta, J., Muñoz, M., Ruiz, P., and Muraviev, D.N., Morphological changes of gel-type functional polymers after intermatrix synthesis of polymer stabilized silver nanoparticles, Nanoscale Res. Lett., 2013, vol. 8, p. 255.

    Article  Google Scholar 

  11. Novikova, S.A., Yurkov, G.Yu., and Yaroslavtsev, A.B., Synthesis and transport properties of membrane materials with incorporated metal nanoparticles, Mendeleev Commun., 2010, vol. 20, p. 89.

    Article  CAS  Google Scholar 

  12. Volkov, V.V., Kravchenko, T.A., and Roldughin, V.I., Metal nanoparticles in catalytic polymer membranes and ion-exchange systems for advanced purification of water from molecular oxygen, Russ. Chem. Rev., 2013, vol. 82, no. 5, p. 465.

    Article  Google Scholar 

  13. Selvaraju, T. and Ramaraj, R., Nanostructured copper particles-incorporated Nafion-modified electrode for oxygen reduction, J. Phys. Indian Acad. Sci., 2005, vol. 65, no. 4, p. 713.

    CAS  Google Scholar 

  14. Chabi, S. and Kheirmand, M., Electrocatalysis of oxygen reduction reaction on Nafion/platinum/gas diffusion layer electrode for PEM fuel cell, Appl. Surf. Sci., 2011, vol. 257, p. 10408.

    Article  CAS  Google Scholar 

  15. Sleightholme, A.E.S., Varcoe, J.R., and Kucernak, A.R., Oxygen reduction at the silver/hydroxide-exchange membrane interface, Electrochem. Commun., 2008, vol. 10, p. 151.

    Article  CAS  Google Scholar 

  16. Gorshkov, V.S., Zakharov, P.N., Polyanskii, L.N., Chayka, M.Yu., Kravchenko, T.A., and Krysanov, V.A., Composites of the ion-exchange membrane MF-4SK with metal nanoparticles and activated carbon Norit 30 in oxygen electroreduction, Sorbtsionnye Khromatogr.Protsessy, 2014, vol. 14, no. 4, p. 601.

    CAS  Google Scholar 

  17. Damaskin, B.B., Petriy, O.A., and Tsirlina, G.A., Elektrokhimiya: uchebnoe posobie (Electrochemistry: A Study Guide), St. Petersburg: Lan, 2015.

  18. Chaika, M.Y., Kravchenko, T.A., Polyanskii, L.N., and Krysanov, V.A., Electroreduction of molecular oxygen on dispersed copper in an ion-exchange matrix, Russ. J. Electrochem., 2008, vol. 44, no. 11, p. 1244.

    Article  CAS  Google Scholar 

  19. Khorolskaya, S.V., Polyanskii, L.N., Kravchenko, T.A., and Konev, D.V., Cooperative interactions of metal nanoparticles in the ion-exchange matrix with oxygen dissolved in water, Russ. J. Phys. Chem. A, 2014, vol. 88, no. 6, p. 1000.

    Article  CAS  Google Scholar 

  20. Information on the Lewatit K 2620 product. https://www.lenntech.com/Data-sheets/Lewatit-K-2620-L.pdf.

  21. Fernandez, J.L., Walsh, D.A., and Bard, A.J., Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy M–Co (M: Pd, Ag, Au), J. Am. Chem. Soc., 2005, vol. 127, no. 1, p. 357.

    Article  CAS  Google Scholar 

  22. Pech-Pech, I.E., Dominic, F.G., and Perez-Robles, J.F., Nanoparticles of Ag with a Pt and Pd rich surface supported on carbon as a new catalyst for the oxygen electroreduction reaction (ORR) in acid electrolytes: Part 2, J. Power Sources, 2015, vol. 276, p. 374.

    Article  CAS  Google Scholar 

  23. Das, T.N., Saturation concentration of dissolved O2 in highly acidic aqueous solutions of H2SO4, Ind. Eng. Chem. Res., 2005, vol. 44, p. 1660.

    Article  CAS  Google Scholar 

  24. Gara, M. and Compton, R.G., Activity of carbon electrodes towards oxygen reduction in acid: A comparative study, New J. Chem., 2011, vol. 35, p. 2647.

    Article  CAS  Google Scholar 

  25. Tomashov, N.D., Korroziya metallov s kislorodnoi depolyarizatsiei (Corrosion of Metals with Oxygen Depolarization), Moscow: Acad. Nauk SSSR, 1947.

  26. Khimicheskoe osazhdenie metalov iz vodnykh rastvorov (Chemical Deposition of Metals from Aqueous Solutions), Sviridov, V.V., Ed., Minsk: Univ., 1987.

    Google Scholar 

  27. Demarconnay, L., Coutanceau, C., and Leger, J.-M., Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts – effect of the presence of methanol, Electrochim. Acta, 2004, vol. 49, p. 4513.

    Article  CAS  Google Scholar 

  28. Sarapuu, A., Kallip, S., Kasikov, A., Matisen, L., and Tammeveski, K., Electroreduction of oxygen on gold-supported thin Pt films in acid solutions, J. Electroanal. Chem., 2008, vol. 624, p. 144.

    Article  CAS  Google Scholar 

  29. Yang, Y. and Zhou, Y., Particle size effects for oxygen reduction on dispersed silver + carbon electrodes in alkaline solution, Electroanal. Chem., 1995, vol. 397, p. 271.

    Article  Google Scholar 

  30. Antropov, L.I., Teoreticheskaya elektrokhimiya (Theoretical Electrochemistry), Moscow: Vysshaya Shkola, 1984.

  31. Tomashov, N.D., Korroziya i zashchita metallov. Chast’ 1. Teoriya korrozii metallov (Metal Corrosion and Protection. Part 1. Metal Corrosion Theory), Moscow: Metallurgizdat, 1952.

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research (project no. 17-08-00426a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Kravchenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravchenko, T.A., Vakhnin, D.D., Pridorogina, V.E. et al. Electrochemical Activity of Metal-Ion Exchanger Nanocomposites. Russ J Electrochem 55, 1251–1257 (2019). https://doi.org/10.1134/S1023193519120097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519120097

Keywords:

Navigation