Skip to main content

Advertisement

Log in

Enhancement of electromagnetic interference shielding based on Co0.5Zn0.5Fe2O4/PANI-PTSA nanocomposites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanotechnology has involved enormous attention in enhancing electromagnetic interference (EMI) shielding. The nanocomposite {Co0.5Zn0.5Fe2O4/PANI-PTSA} was synthesized in different ratios (9:1, 3:1, 1:1 and 1:3) and coded as (CZFP1, CZFP2, CZFP3 and CZFP4), respectively. X-ray diffraction, Hall effect, vibrating-sample magnetometer and then vector network analyzer in X-band were used to be characterized. The Nicholson–Ross–Weir (NRW) method was applied to determine the real and imaginary parts of the complex relative permittivity (ε*) and permeability (μ*). The nanocomposite CZFP3 exhibited the best absorption property with the optimal matching thickness of 3 mm in the frequency of 8–12 GHz. The value of the maximum RL was − 2.3 dB (> 40% power absorption) at 8.1 GHz, − 17.08 dB (98% power absorption) at 9 GHz and − 24.86 dB (99.73% power absorption) at 10.9 GHz. The excellent absorption properties of Co0.5Zn0.5Fe2O4/PANI-PTSA nanocomposites with ratio weight 1:1 indicated their great potential as microwave absorbing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.F. Hochepied, M.P. Pileni, Magnetic properties of mixed cobalt–zinc ferrite nanoparticles. J. Appl. Phys.s 87, 5 (2000)

    Article  Google Scholar 

  2. P. Gairola, L.P. Purohita, S.P. Gairolab, P. Bhardwajb, S. Kaushik, Enhanced electromagnetic absorption in ferrite and tantalum pentoxide based polypyrrole nanocomposite. Prog. Nat. Sci. Mater. Int. 29, 170–176 (2019)

    Article  Google Scholar 

  3. A.A. Sattar, D.E. El-Nashar, W.R. Agami, M. Adel Aly, Mechanical and dielectric properties of cobalt–zinc nanoferrite/nitrile butadiene rubber composites. J. Thermoplast. Compos. Mater. 31(1), 3–22 (2018)

    Article  Google Scholar 

  4. S. Amiri, H. Shokrollahi, The role of cobalt ferrite magnetic nanoparticles in medical science. Mater. Sci. Eng. C 33, 1–8 (2013)

    Article  Google Scholar 

  5. C.R. Stein, M.T.S. Bezerra, G.H.A. Holanda, J. André-Filho, P.C. Morais, Structural and magnetic properties of cobalt ferrite nanoparticles synthesized by co-precipitation at increasing temperatures. AIP Adv. 8, 056303 (2018). https://doi.org/10.1063/1.5006321

    Article  ADS  Google Scholar 

  6. S.H.A. Al Lehyani, R.A. Hassan, A.A. Alharbi, T. Alomayri, H. Alamri, Magnetic Hyperthermia using Cobalt Ferrite Nanoparticles: The Influence of Particle Size. Int. J. Adv. Technol. 8, 1000193–1000201 (2017)

    Google Scholar 

  7. W. Mengqi, L. Ying, L. Yiran, Y. Haibo, Core–shell structure BaFe12O19@PANI composites with thin matching thickness and effective microwave absorption properties. J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01804-0

    Article  Google Scholar 

  8. M.M. Ismail, S.N. Rafeeq, J.M.A. Sulaiman, A. Mandal, Electromagnetic interference shielding and microwave absorption properties of cobalt ferrite CoFe2O4/polyaniline composite. Appl. Phys. A 124, 380 (2018)

    Article  ADS  Google Scholar 

  9. X.-J. Zhang, G.-S. Wang, Y.-Z. Wei, L. Guoa, M.-S. Cao, Polymer-composite with high dielectric constant and enhanced absorption properties based on graphene–CuS nanocomposites and polyvinylidene fluoride. J. Mater. Chem. A 1, 12115–12122 (2013)

    Article  Google Scholar 

  10. W. Fusheng, Z. Fang, L. Zhongyuan, Investigation on microwave absorption properties for multiwalled carbon nanotubes/fe/co/ni nanopowders as lightweight absorbers. J. Phys. Chem. C 115, 14025–14030 (2011)

    Article  Google Scholar 

  11. Q. Yue, X. Junping, J. Qi, L. Liying, F. Huili, Preparation and microwave absorption properties of ZnFe2O4/polyaniline/graphene oxide composite. Results Phys. 13, 102221 (2019)

    Article  Google Scholar 

  12. R. Sajidur, L. Jian, A. Rida, B. Hong, Synthesis of composite of ZnO spheres with polyaniline and their microwave absorption properties. J. Saudi Chem. Soc. (2018). https://doi.org/10.1016/j.jscs.2018.04.006

    Article  Google Scholar 

  13. W. Min, Z. Yanlin, D. Chengjun, C. Gang, G. Hongtao, Preparation and electromagnetic shielding effectiveness of cobalt ferrite nanoparticles/carbon nanotubes composites. Nanomater. Nanotechnol. 9, 1–7 (2019). https://doi.org/10.1177/1847980419837821

    Article  Google Scholar 

  14. S.B. Waje, M. Hashim, W.D.W. Yusoff, Z. Abbas, Sintering temperature dependence of room temperature magnetic and dielectric properties of Co0.5Zn0.5Fe2O4 prepared using mechanically alloyed nanoparticles. J. Magn. Magn. Mater. 322, 686–691 (2010)

    Article  ADS  Google Scholar 

  15. Y.B. Feng, T. Qiu, C.Y. Shen, X.-Y. Li, Electromagnetic and absorption properties of carbonyl iron/rubber radar absorbing materials. IEEE Trans. Magn. 42(3), 363–368 (2006)

    Article  ADS  Google Scholar 

  16. B.W. Li, Y. Shen, Z.-X. Yue, C.-W. Nan, Enhanced microwave absorption in nickel/hexagonal-ferrite/polymer composites. Appl. Phys. Lett. 89(13), 132504 (2006)

    Article  ADS  Google Scholar 

  17. R.C. Che, C.Y. Zhi, C.Y. Liang, X.G. Zhou, Fabrication and microwave absorption of carbon nanotubes CoFe2O4 spinel nanocomposite. Appl. Phys. Lett. 88(3), 1–3 (2006)

    Article  Google Scholar 

  18. Y. Qi, P. Yin, L. Zhang, J. Wang, X. Feng, K. Wang, L. Zhao, X. Sun, J. Dai, Novel microwave absorber of NixMn1−xFe2O4/carbonized chaff (x = 0 3, 0 5, and 0 7) based on biomass. ACS Omega 4, 12376–12384 (2019)

    Article  Google Scholar 

  19. R. Ratheesh, K. Viswanathan, Chemical polymerization of aniline using para-toluene sulphonic acid. J. Appl. Phys. 6(1), 01–09 (2014)

    Google Scholar 

  20. N. Gandhi, K. Singh, A. Ohlan, D.P. Singh, S.K. Dhawan, Thermal, dielectric and microwave absorption properties of polyaniline–CoFe2O4 nanocomposites. Compos. Sci. Technol. 71, 1754–1760 (2011)

    Article  Google Scholar 

  21. S.N. Rafeeq, M.M. Ismail, J.M.A. Sulaiman, Magnetic and Dielectric properties of CoFe2O4 and CoxZn1-xFe2O4nanoparticles synthesized using sol–gel method. J. Magn. 22(3), 406–413 (2017)

    Article  Google Scholar 

  22. Y.B. Kannan, R. Saravanan, N. Srinivasan, K. Praveena, K. Sadhana, Synthesis and characterization of some ferrite nanoparticles prepared by co-precipitation method. J. Mater. Sci. Mater. Electron. 27, 12000 (2016). https://doi.org/10.1007/s10854-016-5347-y

    Article  Google Scholar 

  23. R.V. Lakshmi, P. Bera, R.P.S. Chakradhar, B. Choudhury, S.P. Pawar, S. Bose, R.U. Nair, H. Barshilia, Enhanced microwave absorption properties of PMMA modified MnFe2O4/polyaniline nanocomposites. Phys. Chem. Chem. Phys. (2019). https://doi.org/10.1039/C8CP06943C

    Article  Google Scholar 

  24. S. Laurent, C. Henoumont, D. Stanicki, S. Boutry, E. Lipani, S. Belaid, R.N. Muller, L. Vander Elst, Magnetic properties, in MRI Contrast Agents. Springer Briefs in Applied Sciences and Technology (Springer, Singapore, 2017), pp. 5–11

  25. T. Scepka, Noninvasive control of magnetic state in ferromagnetic nanodots by Hall probe magnetometry. (Doctoral Degree), Slovak University of Technology (2016)

  26. M.M. Ismail, N.A. Jaber, Structural analysis and magnetic properties of lithium-doped Ni–Zn ferrite nanoparticle. J. Supercond. Nov. Magn. 31, 1917–1923 (2018)

    Article  Google Scholar 

  27. A.M. Nicolson, G.F. Ross, Measurement of the intrinsic propertiesof materials by time-domain techniques. IEEE Trans. Instrum. Meas. 19, 377–382 (1970)

    Article  Google Scholar 

  28. W.B. Weir, Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 62, 33–36 (1973)

    Article  Google Scholar 

  29. H.J. Kwon, Y. Shin, J.H. Oh, The microwave absorbing and resonance phenomena of Y-type hexagonal ferrite microwave absorbers. J. Appl. Phys. 75(10), 6109–6111 (1994)

    Article  ADS  Google Scholar 

  30. M. Gholampoor, F. Movassagh-Alangh, H. Salimkhani, Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method. Solid State Sci. 64, 51–61 (2017)

    Article  ADS  Google Scholar 

  31. J.H. Wu, D.D.L. Chung, Combined use of magnetic and electrically conductive fillers in a polymer matrix for electromagnetic interference shielding. J. Electron. Mater. 37(8), 1088–1094 (2008)

    Article  ADS  Google Scholar 

  32. J.C. Wang, C.S. Xiang, Q. Liu, Y.B. Pan, J.K. Guo, Ordered mesoporous carbon/fused silica composites. Adv. Funct. Mater. 18(19), 2995–3002 (2008)

    Article  Google Scholar 

  33. X.G. Liu, B. Li, D.Y. Geng, W.B. Cui, F. Yang, Z.G. Xie et al., (Fe, Ni)/C nanocapsules for electromagnetic-wave-absorber in the whole Ku-band. Carbon 47, 470–474 (2009)

    Article  Google Scholar 

  34. K. Ishino, Y. Narumiya, Development of magnetic ferrites: control and application of losses. Ceram. Bull. 66, 1469–1474 (1987)

    Google Scholar 

  35. D.A. Dimitrov, G.M. Wysin, Magnetic properties of spherical fcc clusters with radial surface anisotropy. Phys. Rev. B 51, 11947–11950 (1995)

    Article  ADS  Google Scholar 

  36. V.P. Shilov, J.C. Bacri, F. Gazeau, F. Gendron, R. Perzynski, Y.L. Raikher, Ferromagnetic resonance in ferrite nanoparticles with uniaxial surface anisotropy. J. Appl. Phys. 85, 6642–6647 (1999)

    Article  ADS  Google Scholar 

  37. N.F. Colaneri, L.W. Shacklette, IEEE T Instrum. Meas. 41 (1992)

  38. M. Bayat, H. Yang, F.K. Ko, D. Michelson, A. Mei, Electromagnetic interference shielding effectiveness of hybrid multifunctional Fe3O4/carbon nanofiber composite. Polymer 55, 936–943 (2014)

    Article  Google Scholar 

  39. F. Movassagh-Alanagh, A. Bordbar-Khiabani, A. Ahangari-Asl, Three-phase PANI@nano-Fe3O4@CFs hetero structure: fabrication, characterization and investigation of microwave absorption and EMI shielding of PANI@nano-Fe3O4@CFs/epoxy hybrid composite. Compos. Sci. Technol. 150, 65–78 (2017)

    Article  Google Scholar 

  40. M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60, 146–156 (2013)

    Article  Google Scholar 

  41. A. Ohlan, K. Singh, A. Chandra, S.K. Dhawan, Microwave absorption behavior of core–shell structured poly (3, 4-ethylenedioxy thiophene)-barium ferrite nanocomposites. ACS Appl. Mater. Interface 2, 927–933 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Department of Applied Sciences, University of Technology, Baghdad, Iraq, and University Of Mosul College Of Dentistry, Mosul, Iraq, for their provided facilities, which helped to improve the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhils M. Ismail.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulaiman, J.M.A., Ismail, M.M., Rafeeq, S.N. et al. Enhancement of electromagnetic interference shielding based on Co0.5Zn0.5Fe2O4/PANI-PTSA nanocomposites. Appl. Phys. A 126, 236 (2020). https://doi.org/10.1007/s00339-020-3413-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3413-z

Keywords

Navigation