Skip to main content
Log in

Immobilization of L-Asparaginase on Magnetic Nanoparticles for Cancer Treatment

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this presented work, magnetic poly(HEMA-GMA) nanoparticles were synthesized, characterized, and used for immobilization of an anti-leukemic enzyme L-asparaginase. The average particle size of the synthesized magnetic nanoparticles was found to be as 117.5 nm. L-asparaginase was successfully immobilized onto the synthesized magnetic nanoparticles, and attached amount of L-asparaginase was found to be as 66.43 mg/g nanoparticle. The effects of the medium pH, temperature, and substrate concentration on the L-asparaginase activity were also tested. Optimum pH of the free and immobilized L-asparaginase was found to be as 7.5 and 6.5, respectively. Optimum temperature of the free L-asparaginase was 45 °C, while optimum temperature was shifted to 55 °C after immobilization onto the magnetic nanoparticles. Also, kcat value of free L-asparaginase (47,356 min−1) was calculated to be higher than that of immobilized L-asparaginase (497 min−1). Thermal stability of both asparaginase preparation was followed for 10 h, and at the end of the incubation time, free asparaginase almost lost its activity, while immobilized asparaginase protected 50% of its initial activity. Storage stabilities of free and immobilized asparaginase were also tested, and at the end of the 40 days storage, free asparaginase lost all of its activity, while immobilized asparaginase still showed 30% activity. Operational stability of immobilized asparaginase was tested for 8 successive usage, and immobilized asparaginase lost only 15% of its initial activity. In present study, activities of free and immobilized L-asparaginase were tested in artificial human serum medium, to foresee the in vivo efficiency, and it was demonstrated here that immobilized L-asparaginase protected its 74.74% of its initial activity in artificial serum medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Narta, U. K., Kanwar, S. S., & Azmi, W. (2007). Pharmacological and clinical evaluation of L-asparaginase in the treatment of leukemia. Critical Reviews in Oncology/Hematology, 61(3), 208–221.

    Article  PubMed  Google Scholar 

  2. Verma, N., Kumar, K., Kaur, G., & Anand, S. (2007). L-asparaginase: a promising chemotherapeutic agent. Critical Reviews in Biotechnology, 27(1), 45–62.

    Article  CAS  PubMed  Google Scholar 

  3. Earl, M. (2009). Incidence and management of asparaginase-associated adverse events in patients with acute lymphoblastic leukemia. Clinical Advances in Hematology & Oncology: H&O, 7(9), 600–606.

    Google Scholar 

  4. Agrawal, N. R., Bukowski, R. M., Rybicki, L. A., Kurtzberg, J., Cohen, L. J., & Hussein, M. A. (2003). A phase I–II trial of polyethylene glycol-conjugated L-asparaginase in patients with multiple myeloma. Cancer, 98(1), 94–99.

    Article  CAS  PubMed  Google Scholar 

  5. Poznansky, M. J., Shandling, M., Salkie, M. A., Elliott, J., & Lau, E. (1982). Advantages in the use of L-asparaginase-albumin polymer as an antitumor agent. Cancer Research, 42(3), 1020–1025.

    CAS  PubMed  Google Scholar 

  6. Gombotz, W. R., Hoffman, A. S., Schmer, G., & Uenoyama, S. (1985). The immobilization of L-asparaginase on porous hollow fiber plasma filters. Journal of Controlled Release, 2, 375–383.

    Article  CAS  Google Scholar 

  7. Jean-Francois, J., & Fortier, G. (1996). Immobilization of L-asparaginase into a biocompatible poly (ethylene glycol)-albumin hydrogel: I: preparation and in vitro characterization. Biotechnology and Applied Biochemistry, 23(3), 221–226.

    CAS  PubMed  Google Scholar 

  8. Vına, I., Karsakevich, A., & Bekers, M. (2001). Stabilization of anti-leukemic enzyme L-asparaginase by immobilization on polysaccharide levan. Journal of Molecular Catalysis B: Enzymatic, 11(4–6), 551–558.

    Article  Google Scholar 

  9. Balcao, V. M., Mateo, C., Fernández-Lafuente, R., Malcata, F. X., & Guisán, J. M. (2001). Structural and functional stabilization of L-asparaginase via multisubunit immobilization onto highly activated supports. Biotechnology Progress, 17(3), 537–542.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, Y. Q., Tao, M. L., Shen, W. D., Zhou, Y. Z., Ding, Y., Ma, Y., & Zhou, W. L. (2004). Immobilization of L-asparaginase on the microparticles of the natural silk sericin protein and its characters. Biomaterials, 25(17), 3751–3759.

    Article  CAS  PubMed  Google Scholar 

  11. Teodor, E., Litescu, S. C., Lazar, V., & Somoghi, R. (2009). Hydrogel-magnetic nanoparticles with immobilized L-asparaginase for biomedical applications. Journal of Materials Science: Materials in Medicine, 20(6), 1307–1314.

    CAS  PubMed  Google Scholar 

  12. Qiao, J., Qi, L., Mu, X., & Chen, Y. (2011). Monolith and coating enzymatic microreactors of L-asparaginase: kinetics study by MCE–LIF for potential application in acute lymphoblastic leukemia (ALL) treatment. Analyst, 136(10), 2077–2083.

    Article  CAS  PubMed  Google Scholar 

  13. Ghosh, S., Chaganti, S. R., & Prakasham, R. S. (2012). Polyaniline nanofiber as a novel immobilization matrix for the anti-leukemia enzyme L-asparaginase. Journal of Molecular Catalysis B: Enzymatic, 74(1–2), 132–137.

    Article  CAS  Google Scholar 

  14. Sundaramoorthi, C., Rajakumari, R., Dharamsi, A. B. H. A. Y., & Vengadeshprabhu, K. (2012). Production and immobilization of L-asparaginase from marine source. International Journal of Pharmacy and Pharmaceutical Sciences, 4, 229–232.

    CAS  Google Scholar 

  15. Mu, X., Qiao, J., Qi, L., Dong, P., & Ma, H. (2014). Poly (2-vinyl-4, 4-dimethylazlactone)-functionalized magnetic nanoparticles as carriers for enzyme immobilization and its application. ACS Applied Materials & Interfaces, 6(23), 21346–21354.

    Article  CAS  Google Scholar 

  16. Bahreini, E., Aghaiypour, K., Abbasalipourkabir, R., Mokarram, A. R., Goodarzi, M. T., & Saidijam, M. (2014). Preparation and nanoencapsulation of L-asparaginase II in chitosan-tripolyphosphate nanoparticles and in vitro release study. Nanoscale Research Letters, 9(1), 340.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ulu, A., Koytepe, S., & Ates, B. (2016). Design of starch functionalized biodegradable P (MAA-co-MMA) as carrier matrix for l-asparaginase immobilization. Carbohydrate Polymers, 153, 559–572.

    Article  CAS  PubMed  Google Scholar 

  18. Ulu, A., Koytepe, S., & Ates, B. (2016). Synthesis and characterization of biodegradable pHEMA-starch composites for immobilization of L-asparaginase. Polymer Bulletin, 73(7), 1891–1907.

    Article  CAS  Google Scholar 

  19. Bahraman, F., & Alemzadeh, I. (2017). Optimization of l-asparaginase immobilization onto calcium alginate beads. Chemical Engineering Communications, 204(2), 216–220.

    Article  CAS  Google Scholar 

  20. Uygun, M., Jurado-Sánchez, B., Uygun, D. A., Singh, V. V., Zhang, L., & Wang, J. (2017). Ultrasound-propelled nanowire motors enhance asparaginase enzymatic activity against cancer cells. Nanoscale, 9(46), 18423–18429.

    Article  CAS  PubMed  Google Scholar 

  21. Monajati, M., Borandeh, S., Hesami, A., Mansouri, D., & Tamaddon, A. M. (2018). Immobilization of L-asparaginase on aspartic acid functionalized graphene oxide nanosheet: enzyme kinetics and stability studies. Chemical Engineering Journal, 354, 1153–1163.

    Article  CAS  Google Scholar 

  22. Agrawal, S., Sharma, I., Prajapati, B. P., Suryawanshi, R. K., & Kango, N. (2018). Catalytic characteristics and application of l-asparaginase immobilized on aluminum oxide pellets. International Journal of Biological Macromolecules, 114, 504–511.

    Article  CAS  PubMed  Google Scholar 

  23. Ulu, A., Noma, S. A. A., Koytepe, S., & Ates, B. (2019). Chloro-modified magnetic Fe 3 O 4@ MCM-41 core–shell nanoparticles for L-asparaginase immobilization with improved catalytic activity, reusability, and storage stability. Applied Biochemistry and Biotechnology, 187(3), 938–956.

    Article  CAS  PubMed  Google Scholar 

  24. Ahmad, R., & Sardar, M. (2015). Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochemistry and Analytical Biochemistry, 4(2), 1.

    CAS  Google Scholar 

  25. Vaghari, H., Jafarizadeh-Malmiri, H., Mohammadlou, M., Berenjian, A., Anarjan, N., Jafari, N., & Nasiri, S. (2016). Application of magnetic nanoparticles in smart enzyme immobilization. Biotechnology Letters, 38(2), 223–233.

    Article  CAS  PubMed  Google Scholar 

  26. Orhan, H., Evli, S., Dabanca, M. B., Başbülbül, G., Uygun, M., & Uygun, D. A. (2019). Bacteria killer enzyme attached magnetic nanoparticles. Materials Science and Engineering: C, 94, 558–564.

    Article  CAS  Google Scholar 

  27. Alpay, P., & Uygun, D. A. (2015). Usage of immobilized papain for enzymatic hydrolysis of proteins. Journal of Molecular Catalysis B: Enzymatic, 111, 56–63.

    Article  CAS  Google Scholar 

  28. Mashburn, L. T., & Wriston Jr., J. C. (1963). Tumor inhibitory effect of L-asparaginase. Biochemical and Biophysical Research Communications, 12(1), 50–55.

    Article  CAS  Google Scholar 

  29. Zhang, Y. Q., Zhou, W. L., Shen, W. D., Chen, Y. H., Zha, X. M., Shirai, K., & Kiguchi, K. (2005). Synthesis, characterization and immunogenicity of silk fibroin-L-asparaginase bioconjugates. Journal of Biotechnology, 120(3), 315–326.

    Article  CAS  PubMed  Google Scholar 

  30. Youssef, M. M., & Al-Omair, M. A. (2008). Cloning, purification, characterization and immobilization of L-asparaginase II from E. coli W3110. Asian J. Biochem, 3(6), 337–350.

    CAS  Google Scholar 

Download references

Funding

This study was funded by Adnan Menderes University Research Fund (grant number FEF-17001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Aktaş Uygun.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orhan, H., Aktaş Uygun, D. Immobilization of L-Asparaginase on Magnetic Nanoparticles for Cancer Treatment. Appl Biochem Biotechnol 191, 1432–1443 (2020). https://doi.org/10.1007/s12010-020-03276-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03276-z

Keywords

Navigation