Skip to main content
Log in

Solid-State Fermentation of Cassava Roots Using Cellulolytic-Type Alkaliphilic Bacillus spp. Cultures to Modify the Cell Walls and Assist Starch Release

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To improve cassava starch extraction by wet milling, solid-state fermentation of ground roots using cellulolytic-type alkaliphilic Bacilli spp., Bacillus akibai, B. cellulosilyticus and B. hemicellulosilyticus was investigated. Enzyme assay and scanning electron microscopy indicated that Bacillus spp. production of extracellular cellulase and polygalacturonase caused the formation of micropores through the root parenchyma cell walls and exposed the embedded cellulosic network. Gas chromatography data of the cell wall constituent sugars remaining after fermentation and Fourier transform infrared data indicated that the Bacillus treatments reduced the levels of pectin and, hemicellulose and to lesser extent cellulose. Wide-angle X-ray scattering data indicated that the Bacillus spp. cell wall degrading enzymes had partially hydrolysed the amorphous fractions of the cell wall polysaccharides. All the Bacillus spp. treatments improved starch extraction by 17–23% compared to fermentation with endogenous microflora. B. cellulosilyticus was most effective in disintegration of large root particles and as result, released marginally the most starch, probably due to it having the highest cellulase activity. Solid-state fermentation using cellulolytic-type Bacillus spp. is, therefore, promising to technology to improve the efficiency of cassava wet milling cell wall disintegration and consequent starch yield without use of commercial cell wall degrading enzymes or polluting chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CWM:

Cell wall material

EM:

Endogenous microflora

MRD:

Maximum recovery diluent

WAXS:

Wide-angle X-ray scattering spectroscopy

References

  1. Parmar, A., Sturm, B., & Hensel, O. (2017). Crops that feed the world: production and improvement of cassava for food, feed, and industrial uses. Food Security, 9(5), 907–927.

    Article  Google Scholar 

  2. Halley, P. J., & Avérous, L. (2014). Starch polymers: from genetic engineering to green application. San Diego: Elsevier (Chapter 3).

    Google Scholar 

  3. Saengchan, K., Nopharatana, M., Lerdlattaporn, R., & Songkasiri, W. (2015). Enhancement of starch-pulp separation in centrifugal-filtration process: effects of particle size and variety of cassava root on free starch granule separation. Food Bioproducts Processing, 95, 208–217.

    Article  CAS  Google Scholar 

  4. Sriroth, K., Piyachomkwan, K., Wanlapatit, S., & Oates, C. G. (2000). Cassava starch technology: the Thai experience. Starch-Stärke, 52, 439–449.

    Article  CAS  Google Scholar 

  5. Ray, R. C., & Sivakumar, P. S. (2009). Traditional and novel fermented foods and beverages from tropical root and tuber crops: review. International Journal of Food Science and Technology, 44, 1073–1087.

    Article  CAS  Google Scholar 

  6. Ngea, G. L. N., Guillon, F., Ngang, J. J. E., Bonnin, E., Bouchet, B., & Saulnier, L. (2016). Modification of cell wall polysaccharides during retting of cassava roots. Food Chemistry, 213, 402–409.

    Article  Google Scholar 

  7. Adetunji, A. I., du Clou, H., Walford, S. N., & Taylor, J. R. N. (2016). Complementary effects of cell wall degrading enzymes together with lactic acid fermentation on cassava tuber cell wall breakdown. Industial Crops and Products, 90, 110–117.

    Article  CAS  Google Scholar 

  8. Padonou, S. W., Nielsen, D. S., Akissoe, N. H., Hounhouigan, J. D., Nago, M. C., & Jakobsen, M. (2010). Development of starter culture for improved processing of Lafun, an African fermented cassava food product. Journal of Applied Microbiology, 109, 402–1410.

    Article  Google Scholar 

  9. Horikoshi, K. (1999). Alkaliphiles: some applications of their products for biotechnology. Microbiology and Molecular Biology Reviews, 63, 735–750.

    Article  CAS  Google Scholar 

  10. Nogi, Y., Takami, H., & Horikoshi, K. (2005). Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. International Journal of Systematic and Evolutionary Microbiology, 55(Pt 6), 2309–2315.

    Article  CAS  Google Scholar 

  11. Fujinami, S., & Fujisawa, M. (2010). Industrial applications of alkaliphiles and their enzymes–past, present and future. Environmental Technology, 31, 845–856.

    Article  CAS  Google Scholar 

  12. Odoch, M., Buys, E. M., & Taylor, J. R. N. (2017). Mechanism of cassava tuber cell wall weakening by dilute sodium hydroxide steeping. Food Chemistry, 228, 338–347.

    Article  CAS  Google Scholar 

  13. Gessesse, A., & Mamo, G. (1999). High-level xylanase production by an alkaliphilic Bacillus sp. by using solid state fermentation. Enzyme and Microbial Technology, 25, 68–72.

    Article  CAS  Google Scholar 

  14. Amoa-Awua, W. K. A., & Jakobsen, M. (1995). The role of Bacillus species in the fermentation of cassava. Journal of Applied Microbiology, 79, 250–256.

    CAS  Google Scholar 

  15. Kumar, L., Kumar, D., Nagar, S., Gupta, R., Garg, N., Kuhad, R. C., & Gupta, V. K. (2014). Modulation of xylanase production from alkaliphilic Bacillus pumilis VLK-1 through process optimization and temperature shift operation. 3 Biotech, 4, 345–356.

    Article  Google Scholar 

  16. Salvador, L. D., Suganuma, T., Kitahara, K., Tanoue, H., & Ichiki, M. (2000). Monosaccharide composition of sweetpotato fiber and cell wall polysaccharides from sweetpotato, cassava, and potato analyzed by the high-performance anion exchange chromatography with pulsed amperometric detection method. Journal of Agricultural and Food Chemistry, 48, 3448–3454.

    Article  CAS  Google Scholar 

  17. Ramírez-Tapias, Y. A., Rivero, C. W., Britos, C. N., & Trelles, J. A. (2015). Alkaline and thermostable polygalacturonase from Streptomyces halstedii ATCC 10897 with applications in waste waters. Biocatalysis and Agricultural Biotechnology, 4, 221–228.

    Article  Google Scholar 

  18. AACC. (2000). Approved methods of the American Association of Cereal Chemists (10th ed.). St. Paul: AACC (method 44-15A moisture—Air-oven).

    Google Scholar 

  19. Wokadala, O. C., Ray, S. S., & Emmambux, M. N. (2012). Occurrence of amylose–lipid complexes in teff and maize starch biphasic pastes. Carbohydrate Polymers, 90, 616–622.

    Article  CAS  Google Scholar 

  20. Horikoshi, K. (1996). Alkaliphiles-from an industrial point of view. FEMS Microbiology Reviews, 18, 259–270.

    Article  CAS  Google Scholar 

  21. Nyanga-Koumou, A. P., Ouoba, L. I. I., Kobawila, S. C., & Louembe, D. (2012). Response mechanisms of lactic acid bacteria to alkaline environments: a review. Critical Reviews in Microbiology, 38, 185–190.

    Article  CAS  Google Scholar 

  22. Jayani, R. S., Shukla, S. K., & Gupta, R. (2010). Screening of bacterial strains for polygalacturonase activity: its production by Bacillus sphaericus (MTCC 7542). Enzyme Research, 306785.

  23. Mead, D., Drinkwater, C., & Brumm, P. J. (2013). Genomic and enzymatic results show Bacillus cellulosilyticus uses a novel set of LPXTA carbohydrases to hydrolyze polysaccharides. PLoS One, 8(e), 61131.

    Article  Google Scholar 

  24. Staack, L., Della Pia, E. A., Jørgensen, B., Petersson, D., & Pedersen, N. R. (2019). Cassava cell wall characterization and degradation by a multicomponent NSP-targeting enzyme (NSPase). Scientific Reports, 9, 10150.

    Article  Google Scholar 

  25. Figueiredo, P. G., Moraes-Dallaqua, M. A. D., Bicudo, S. J., Tanamati, F. Y., & Aguiar, E. B. (2015). Development of tuberous cassava roots under different tillage systems: descriptive anatomy. Plant Production Science, 18, 241–245.

    Article  CAS  Google Scholar 

  26. Hoeger, I. C., Nair, S. S., Ragauskas, A. J., Deng, Y., Rojas, O. J., & Zhu, J. Y. (2013). Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose, 20, 807–818.

    Article  CAS  Google Scholar 

  27. Wang, Q. Q., Zhu, J. Y., Gleisner, R., Kuster, T. A., Baxa, U., & McNeil, S. E. (2012). Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose, 19, 1631–1643.

    Article  CAS  Google Scholar 

  28. Cheng, J., Lin, R., Ding, L., Song, W., Li, Y., Zhou, J., & Cen, K. (2015). Fermentative hydrogen and methane cogeneration from cassava residues: effect of pretreatment on structural characterization and fermentation performance. Bioresource Technology, 179, 407–413.

    Article  CAS  Google Scholar 

  29. Szymanska-Chargot, M., & Zdunek, A. (2013). Use of FT-IR spectra and PCA to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process. Food Biophysics, 8(1), 29–42.

    Article  Google Scholar 

  30. Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., & Johnson, D. K. (2010). Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels, 3, 1–10.

    Article  Google Scholar 

  31. Leite, A. L. M. P., Zanon, C. D., & Menegalli, F. C. (2017). Isolation and characterization of cellulose nanofibers from cassava root bagasse and peelings. Carbohydrate Polymers, 157, 962–970.

    Article  CAS  Google Scholar 

  32. Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M., & Hai, Y. (2011). Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers, 83, 1804–1811.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the International Centre for Development Oriented Research in Agriculture [grant number GU 145879-56] and a University of Pretoria Institutional Research Theme bursary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. N. Taylor.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odoch, M., Buys, E.M. & Taylor, J.R.N. Solid-State Fermentation of Cassava Roots Using Cellulolytic-Type Alkaliphilic Bacillus spp. Cultures to Modify the Cell Walls and Assist Starch Release. Appl Biochem Biotechnol 191, 1395–1410 (2020). https://doi.org/10.1007/s12010-020-03286-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03286-x

Keywords

Navigation