Skip to main content
Log in

Effect of Ce Doping on Hydrothermal Stability of Cu-SAPO-18 in the Selective Catalytic Reduction of NO with NH3

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

The Ce-Cu-SAPO-18 samples were prepared by the ion exchange method. Physicochemical properties of the samples were systematically characterized by a number of analytical techniques, and Ce doping and hydrothermal temperature effects on NH3-SCR activity of Cu-SAPO-18 were also investigated. The results show that doping of Ce increased NH3-SCR activity and hydrothermal stability of the Cu-SAPO-18 sample. After Ce doping, a more amount of the isolated Cu2+ ions entered the D6R and the catalyst structure was more stable. The structure and catalytic activity of Ce-Cu-SAPO-18 remained almost intact after hydrothermal aging at 650 °C. After hydrothermal aging at 850 °C, however, the structure of Ce-Cu-SAPO-18 was greatly destroyed, and its catalytic activity declined remarkably. The high-temperature hydrothermal aging treatment led to decreases in amount of the isolated Cu2+ ions and acidic sites, destroying in the zeolitic structure, and drop in NH3-SCR activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Skalska K, Miller JS, Ledakowicz S (2010) Sci Total Environ 408:3976–3989

    Article  CAS  Google Scholar 

  2. Deka U, Juhin A, Eilertsen EA, Emerich H, Green MA, Korhonen ST, Weckhuysen BM, Beale AM (2012) J Phys Chem C 116:4809–4818

    Article  CAS  Google Scholar 

  3. Fickel DW, Lobo RF (2010) J Phys Chem C 114:1633–1640

    Article  CAS  Google Scholar 

  4. Tyrsted C, Borfecchia E, Berlier G, Lomachenko KA, Lamberti C, Bordiga S, Vennestrom PNR, Janssens TVW, Falsig H, Beato P, Puig-Molina A (2016) Catal Sci Technol 6:8314–8324

    Article  CAS  Google Scholar 

  5. Ma L, Li J, Ke R, Fu L (2011) J Phys Chem C 115:7603–7612

    Article  CAS  Google Scholar 

  6. Zhang Q, Qiu C, Xu H, Lin T, Lin Z, Gong M, Chen Y (2011) Catal Today 175:171–176

    Article  CAS  Google Scholar 

  7. Dou B, Lv G, Wang C, Hao Q, Hui K (2015) Chem Eng J 270:549–556

    Article  CAS  Google Scholar 

  8. Gao F, Washton NM, Wang Y, Kollár M, Szanyi J, Peden CHF (2015) J Catal 331:25–38

    Article  CAS  Google Scholar 

  9. Shen M, Wen H, Hao T, Yu T, Fan D, Wang J, Li W, Wang J (2015) Catal Sci Technol 5:1741–1749

    Article  CAS  Google Scholar 

  10. Kim YJ, Lee JK, Min KM, Hong SB, Nam I, Cho BK (2014) J Catal 311:447–457

    Article  CAS  Google Scholar 

  11. Schmieg SJ, Oh SH, Kim CH, Brown DB, Lee JH, Peden CHF, Kim DH (2012) Catal Today 184:252–261

    Article  CAS  Google Scholar 

  12. Wang D, Jangjou Y, Liu Y, Sharma MK, Luo J, Li J, Kamasamudram K, Epling WS (2015) Appl Catal B 165:438–445

    Article  CAS  Google Scholar 

  13. Martínez-Franco R, Moliner M, Corma A (2014) J Catal 319:36–43

    Article  Google Scholar 

  14. Ye Q, Wang L, Yang RT (2012) Appl Catal A 427–428:24–34

    Article  Google Scholar 

  15. Bin F, Wei X, Li B, Hui KS (2015) Appl Catal B 162:282–288

    Article  CAS  Google Scholar 

  16. Chen JS, Wright PA, Thomas JM, Natarajan S, Marchese L, Bradley SM, Sankar G, Catlow CR, Gaiboyes PL, Townsend RP, Lok CM (1994) J Phys Chem 98:10216–10224

    Article  CAS  Google Scholar 

  17. Han S, Cheng J, Zheng C, Ye Q, Cheng S, Kang T, Dai H (2017) Appl Surf Sci 419:382–392

    Article  CAS  Google Scholar 

  18. Han S, Cheng J, Ye Q, Cheng S, Kang T, Dai H (2019) Micropor Mesopor Mat 276:133–146

    Article  CAS  Google Scholar 

  19. Zhang T, Qiu F, Li J (2016) Appl Catal B 195:48–58

    Article  CAS  Google Scholar 

  20. Fan J, Ning P, Wang Y, Song Z, Liu X, Wang H, Wang J, Wang L, Zhang Q (2019) Chem Eng J 369:908–919

    Article  CAS  Google Scholar 

  21. Xue J, Wang X, Qi G, Wang J, Shen M, Li W (2013) J Catal 297:56–64

    Article  CAS  Google Scholar 

  22. Wang J, Yu T, Wang X, Qi G, Xue J, Shen M, Li W (2012) Appl Catal B 127:137–147

    Article  CAS  Google Scholar 

  23. Wang L, Li W, Qi G, Weng D (2012) J Catal 289:21–29

    Article  CAS  Google Scholar 

  24. Zhao Z, Yu R, Shi C, Gies H, Xiao F, De Vos D, Yokoi T, Bao X, Kolb U, McGuire R, Parvulescu A, Maurer S, Müller U, Zhang W (2019) Catal Sci Technol 9:241–251

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21277008 and 20777005), the National Key Research and Development Program of China (Grant No. 2017YFC0209905), and the Natural Science Foundation of Beijing (Grant No. 8082008). We also thank Prof. Ralph T. Yang (University of Michigan) for his helpful discussion and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Ye or Hongxing Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Ye, Q., Han, S. et al. Effect of Ce Doping on Hydrothermal Stability of Cu-SAPO-18 in the Selective Catalytic Reduction of NO with NH3. Catal Surv Asia 24, 134–142 (2020). https://doi.org/10.1007/s10563-020-09294-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-020-09294-5

Keywords

Navigation