Skip to main content
Log in

Estimation curvature in PLIC-VOF method for interface advection

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Heat and mass transfers’ equations of hydrocarbon liquid droplet are solved numerically by using a semi-implicit method based on the finite volume scheme (VOF). The Piece-wise Linear Interface Calculation (PLIC) is used in our modeling. A curvature estimation technique based on PLIC-VOF method is developed. The determination of the normal vector based on the calculation of the curvature is presented. Then, our numerical calculation is performed for hydrocarbon droplets by realizing several static and dynamic tests. These tests are compared to other techniques. Good agreement between the results of our method and the ones of the other techniques is observed. The deformation of the liquid droplet interface, the ascension of the liquid droplet and the liquid droplet surface regression are observed by taking into consideration the effect of the surface tension force and the drag force. Finally, instead of using smoothed color function, our curvature estimation hugely decreases the spurious current and reconstructs smoothed shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

A :

Area of the triangle, m2

c :

Difference of the volume fractions of two-consecutive cells

Cp :

Specific heat, J.kg−1.K−1

d :

Sphere diameter, m

F :

Color function

g :

Terrestrial acceleration, m.s−2

k :

Curvature, m−1

l :

Normal vector impact point

L :

Latent heat, J.kg−1

N :

Total number of cells

n :

Normal

\( \overrightarrow{n} \) :

Normal vector

\( \left|\overrightarrow{n}\right| \) :

Normal modulus

\( \left\Vert \overrightarrow{n}\right\Vert \) :

Norm of the normal vector

P :

Pressure, atm

r :

Sphere radius, m

R :

Curvature radius, m

t :

Time, s

T :

Temperature, K

u :

Velocity component in ordinate direction, m.s−1

v :

Velocity component in coordinate direction, m.s−1

α :

Thermal diffusivity, m2.s−1

β :

Expansion number

δ :

Angle between two adjacent triangles, °

∇:

Gradient, m−1

∂:

Differential

Δ :

Difference

η :

Dimensionless radius

λ :

Thermal conductivity, W.m−1.K−1

μ :

Dynamic viscosity, Kg.m−1.s−1

ϑ :

Kinematic viscosity, m2.s−1

ρ :

Density, kg.m−3

Σ :

Summation

σ :

Surface tension, N.m−1

θ :

Polar angle, °

c :

Curvature

calc:

Calculated

drop:

Droplet

Err:

Error

g :

Gas

init:

Initial

i :

Incremental step in ordinate direction

j :

Incremental step in coordinate direction

k :

Fluids index

l :

Liquid

M :

Mass

T :

Thermal

η :

Radius axis

θ :

Polar axis

0:

Initial

∞:

Ambient medium

′:

Dimensionless

References

  1. Dgheim J, Chahine A, Nahed J (2018) Investigation on the droplet combustion in rotator natural convection. J of King Saud University-Science. https://doi.org/10.1016/j.jksus.2018.02.007

    Article  Google Scholar 

  2. Zhao P, Li G, Yu Y (2014) Numerical simulation and experimental study of heat and mass transfer in fuel droplet evaporation. J Heat and Mass Transfer 50:1145–1154

    Article  Google Scholar 

  3. Dgheim J, Chahine A (2018) Correlation of the droplet burning rate in rotator natural convection. J Appl Phys Lett. https://doi.org/10.1063/1.5020135

    Article  Google Scholar 

  4. Bogner S, Rude U, Harting J (2016) Curvature estimation from a volume of fluid indicator function for the simulation of surface tension and wetting with a free surface lattice Boltzmann method. J Physical Revue E. https://doi.org/10.1103/PhysRevE.93.043302

  5. Malgarinos I, Nikolopoulos N, Gavaises M (2015) Coupling a local adaptive grid refinement technique with an interface sharpening scheme for the simulation of two-phase flow and free surface flows using VOF methodology. J Comput Phys 300:732–753

    Article  MathSciNet  Google Scholar 

  6. Mencinger J, Zun I (2011) A PLIC-VOF method suited for adaptive moving grids. J Comput Phys 230:644–663

    Article  MathSciNet  Google Scholar 

  7. Noh WF, Woodward P (1976) SLIC (simple line Interface calculations). Lecture Notes in Physics 59:330–340

    Article  Google Scholar 

  8. Chorin AJ (1980) Flame advection and propagation algorithms. J Comput Phys 35:1–11

    Article  MathSciNet  Google Scholar 

  9. Nichols BD, Hirt CW (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    Article  Google Scholar 

  10. DeBar RB (1974) Fundamentals of the KRAKEN code. Technical report, United States. https://doi.org/10.2172/7227630

  11. Rudman M (1997) Volume-tracking methods for interfacial flow calculations. Int J Numer Methods Fluids 24:671–691

    Article  MathSciNet  Google Scholar 

  12. Martinez JM, Chesneau X, Zeghmati B (2006) A new curvature technique calculation for surface tension contribution in PLIC-VOF method. J Computational Mechanics 37:182–193

    Article  Google Scholar 

  13. Dyadechko V, Shashkov M (2005) Moment-of-fluid interface reconstruction. Math Model Anal 836:1–41

    Google Scholar 

  14. Jemison M, Loch E, Sussman M, Shashkov M, Arienti M, Ohta M, Wang Y (2013) A coupled level set-moment of fluid method for incompressible two-phase flows. J Sci Comput 54:454–491

    Article  MathSciNet  Google Scholar 

  15. Skarysz M, Dianat M (2018) An iterative interface reconstruction method for PLIC in general convex grids as part of coupled level set volume of fluid solver. J Comput Phys 368:254–276

    Article  MathSciNet  Google Scholar 

  16. Xiao F, Dianat M, McGuirk JJ (2014) Large eddy simulation of single droplet and liquid jet primary breakup using a coupled level set/volume of fluid method. J Atomization & Sprays 24:281–302

    Article  Google Scholar 

  17. Dianat M, Skarysz M, Garmory A (2017) A coupled level set and volume of fluid method for automotive exterior water management applications. Int J Multiphase Flow 91:19–38

    Article  MathSciNet  Google Scholar 

  18. Skarysz M, Garmory A, Dianat M (2018) An iterative interface reconstruction method for PLIC in general convex grids as part of a coupled level set volume of fluid solver. J Comput Phys 368:254–276

    Article  MathSciNet  Google Scholar 

  19. Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354

    Article  MathSciNet  Google Scholar 

  20. Qi Y, Tryggvason G (2018) Computing curvature for volume of fluid methods using machine learning. J Comput Phys 377:155–161

    Article  MathSciNet  Google Scholar 

  21. Meier M, Yadigaroglu G, Smith BL (2002) A novel technique for including surface tension in PLIC-VOF methods. Eur J Mechanics – B/Fluids 21:61–73

    Article  Google Scholar 

  22. Lang S (1977) Analyse réelle. InterEditions ISBN: 978-2-7296-0059-4

  23. Brezis H (1983) Analyse fonctionnelle : théorie et applications. Editions Masson, Paris

    MATH  Google Scholar 

  24. Bellet M (2001) Implementation of surface tension with wall adhesion effects in a three-dimensional finite element model for fluid flow. Commun Numer Methods Eng 17:563–579

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Nahed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nahed, J., Dgheim, J. Estimation curvature in PLIC-VOF method for interface advection. Heat Mass Transfer 56, 773–787 (2020). https://doi.org/10.1007/s00231-019-02737-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02737-4

Navigation