Skip to main content
Log in

Heat transfer during film condensation inside plain tubes. Review of experimental research

  • Review
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper provides a comprehensive review of the published experimental researches on condensation heat transfer inside plain tubes. The existing methods of the research on heat transfer and hydrodynamics have been analyzed and their disadvantages are substantiated (shown). There are considered more than 40 empirical and semi-empirical methods and correlations for prediction of heat transfer coefficients in various heat exchangers, particularly in the evaporative systems of thermal desalinating plants, air conditioning systems, safety systems of reactors, heaters of power plants and condensers of cooling equipment. The given correlations are compared with the experimental data of various authors obtained in the case of condensation of diverse substances in different flow regimes. The correlations are evaluated with the experimental data of different authors for different fluids and flow conditions. According to the comparison performed, the correlations suggested by Thome and others (2003), Cavallini and others (2006), Shah (2015) and Rifert and others (2018) are recommended to be used for the most accurate prediction of heat transfer coefficients in case of condensation of various refrigerants, which in recent years are becoming widespread in power economy (fluid FC-72, methane, carbone dioxide, organic fluids R245fa, Novec®649, HFE-7000, steam, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

Bo i :

Boiling number (\( =\frac{Q}{W\left({h}_{v, in}-{h}_{v, out}\right)} \)).

C f :

friction coefficient.

c p :

liquid specific heat, [J/(kgK)].

d :

inner diameter of the tube, [m].

f :

friction factor.

Fr l :

liquid Froude number (\( =\frac{{\left[G\left(1-x\right)\right]}^2}{\rho_l^2 gd} \)).

G :

mass velocity, [kg/(m2s)].

g :

gravitational acceleration, [m/s2].

Ga :

Galileo number (\( ={\rho}_l\left({\rho}_l-{\rho}_v\right){gd}^3/{\mu}_l^2 \)).

h v,in :

specific enthalpy of saturated vapour refrigerant at inlet of the tube, [J/kg].

h v,out :

specific enthalpy of saturated vapour refrigerant at outlet of the tube, [J/kg].

Ja l :

liquid Jakob number (\( ={\rho}_l\left({\rho}_l-{\rho}_v\right){gd}^3/{\mu}_l^2 \)).

J g :

dimensionless vapour velocity. (=xG/[gdρv(ρl − ρv)]0.5)

l :

length of the tube, [m].

Nu :

Nusselt number (=αd/λl).

Nu f :

film Nusselt number, (\( =\alpha /{\lambda}_l{\left({v}_l^2/g\right)}^{1/3} \)).

p :

pressure, Pa.

p cr :

critical pressure, Pa.

Pr:

Prandtl number.

p r :

reduced pressure (=ps/pcr).

Q :

total rate of heat rejected by refrigerant, [W].

q :

heat flux, [W∙m−2].

q z :

average along the length of the tube heat flux, [W∙m−2].

r :

heat of vaporization, [J∙kg−1].

Re f :

film Reynolds number (=ql/(l)).

Re l :

liquid Reynolds number (=G(1 − x)d/μl).

Re lo :

Reynolds number assuming total mass flowing as a vapour (=Gd/μl).

Re v :

vapour Reynolds number (=Gxd/μv).

Re vo :

Reynolds number assuming total mass flowing as a vapour (=Gd/μv).

Su v :

vapour Suratman nubmer (\( ={\rho}_v\sigma d/{\mu}_v^2 \)).

t :

temperature, [°C].

u :

axial velocity, [m/s].

W :

mass flow rate, [kg/s].

We :

Weber number, (=G2d/(ρσ)).

x :

vapour quality.

X tt :

Martinelli parameter (=(μl/μv)0.1(ρv/ρl)0.5[(1 − x)/x]0.9)

y :

radial distance from the wall, [m].

z :

axial coordinate, [m].

α :

heat transfer coefficient, [W/(m2K)].

α aver :

average along the length of the tube heat transfer coefficient, [W/(m2K)].

δ :

thickness of the condensate film, [m].

ΔP/Δz :

pressure drop, [Pa/m].

P/Δz)a :

acceleration pressure drop, [Pa/m].

P/Δz)f :

frictional pressure drop, [Pa/m].

ΔT :

temperature difference (=ts-tw), [K].

Δx :

changes in vapour quality.

ε :

void fraction.

θ :

liquid level angle subtended from the top of the tube to the liquid level, [rad].

λ :

thermal conductivity, [W/(mK)].

μ :

dynamic viscosity, [Pa·s].

ν :

kinematic viscosity, [m2 s−1].

ρ :

density, [kg/m3].

σ:

surface tension, [N/m].

τw :

shear stress, [Pa].

τg :

gravity force, [Pa].

φ:

angular coordinate, [°].

ϕ 2 :

two-phase multiplier.

Φ2 :

parameter that takes into account influence of two-phase flow on shear stress.

Φq :

parameter that takes into account surface suction at the interphase.

aver :

average.

b :

bottom.

c :

convective.

eq :

equivalent.

f :

film.

in :

inlet of the tube.

l :

liquid.

lo :

corresponding to the entire flow as a liquid.

m :

momentum.

out :

outlet of the tube.

s :

saturated.

t :

top.

tp :

two-phase.

v :

vapour.

vo :

corresponding to the entire flow as a vapour.

w :

wall.

References

  1. Tepe J, Mueller A (1947) Condensation and subcooling inside an inclined tube. Chem Eng Prog 43(5):267–278

    Google Scholar 

  2. Rifert V, Sereda V, Solomakha A (2019) Heat transfer during film condensation inside plain tubes. Review of theoretical research. Heat Mass Transf. https://doi.org/10.1007/s00231-019-02636-8

    Article  Google Scholar 

  3. Rifert V (1983) Vapor condensation inside horizontal pipes. J Eng Phys 44(6):700–710

    Google Scholar 

  4. Rifert V, Sereda V (2015) Condensation inside smooth horizontal tubes: Part 1. Survey of the methods of heat-exchange prediction. Therm Sci 19(5):1769–1789. https://doi.org/10.2298/tsci140522036r

    Article  Google Scholar 

  5. Cavallini A, Censi G, Del Col D, Doretti L, Longo G, Rossetto L, Zilio C (2003) Condensation inside and outside smooth and enhanced tubes – a review of recent research. Int J Refrig 26(4):373–392. https://doi.org/10.1016/s0140-7007(02)00150-0

    Article  Google Scholar 

  6. Garcia-Valladares O (2003) Review of in-tube condensation heat transfer correlations for smooth and microfin tubes. Heat Transf Eng 24(4):6–24. https://doi.org/10.1080/01457630304036

    Article  Google Scholar 

  7. Kandlikar S, Garimella S, Li D, Colin S, King M (2005) Heat transfer and fluid flow in minichannels and microchannels, Elsevier Science

  8. Dalkilic A, Wongwises S (2009) Intensive literature review of condensation inside smooth and enhanced tubes. Int J Heat Mass Transf 52(15–16):3409–3426. https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.011

    Article  Google Scholar 

  9. Dalkilic A, Aktas M, Acikgoz O, Wongwises S (2015) A Review of Recent Empirical Correlations for the Calculation of Determination of R134a’s Convective Heat Transfer Coefficient in Vertical Condensers. Int Commun Heat Mass Transf 69:41–50. https://doi.org/10.1016/j.icheatmasstransfer.2015.10.006

    Article  Google Scholar 

  10. Xiaoyong W, Xiande F, Rongrong S (2012) A comparative study of heat transfer coefficients for film condensation. Energy Sci Technol 3:1):1–1):9. https://doi.org/10.3968/j.est.1923847920120301.152

    Article  Google Scholar 

  11. Sánta R (2012) The analysis of two-phase condensation heat transfer models based on the comparison of the boundary condition. Acta Polytechnica Hungarica 9(6):167–180

    Google Scholar 

  12. Macdonald M (2015) Condensation of pure hydrocarbons and zeotropic mixtures in smooth horizontal tubes, Georgia Institute of Technology

  13. Huang J, Zhang J, Wang L (2015) Review of vapor condensation heat and mass transfer in the presence of non-condensable gas. Appl Therm Eng 89:469–484. https://doi.org/10.1016/j.applthermaleng.2015.06.040

    Article  Google Scholar 

  14. Righetti G, Zilio C, Mancin S, Longo GA (2016) A review on in-tube two-phase heat transfer of hydro-fluoro-olefines refrigerants. Sci Technol Built Environ 22(8):1191–1225. https://doi.org/10.1080/23744731.2016.1229528

    Article  Google Scholar 

  15. Yazid MNAWM, Sidik NAC, Yahya WJ (2017) Heat and mass transfer characteristics of carbon nanotube nanofluids: A review. Renew Sust Energ Rev 80:914–941. https://doi.org/10.1016/j.rser.2017.05.192

    Article  Google Scholar 

  16. Rifert V (1988) Heat transfer and flow modes of phases in laminar film vapour condensation inside a horizontal tube. Int J Heat Mass Transf 31(3):517–523. https://doi.org/10.1016/0017-9310(88)90033-6

    Article  Google Scholar 

  17. Rifert V, Sereda V, Barabash P, Gorin V (2017) Condensation inside smooth horizontal tubes: Part 2. Improvement of heat exchange prediction. Therm Sci 21(3):1479–1489. https://doi.org/10.2298/TSCI140815045R

    Article  Google Scholar 

  18. Nusselt W (1916) Die Oberflachenkondensation des Wasserdampfes. VDI-Zeitschrift 60:542–575

    Google Scholar 

  19. Crosser OK (1955) Condensing heat transfer within horizontal tubes. The Rice Institute, Houston

    Google Scholar 

  20. Akers W, Deans H, Crosser O (1959) Condensing heat transfer within horizontal tubes. Сhem Eng Prog Symp Ser 55:171–176

    Google Scholar 

  21. Akers W, Rosson H (1960) Condensation inside a horizontal tube. In: Chem. Eng. Prog. Symp. Series. pp 145–149

  22. Konsetov V (1960) Experimental investigations of the heat transfer in steam condensing in horizontal and inclined tubes (In Russian). J Heat power eng 12:67–71

    Google Scholar 

  23. Kutateladze S (1961) Heat transfer during film condensation of steam inside a horizontal pipe (In Russian). Problems of heat transfer and hydraulics of two-phase liquids: a digest of articles:138–156

  24. Chato J (1962) Laminar condensation inside horizontal and inclined tube. ASHRAE J 4(2):52–60

    Google Scholar 

  25. Boyko L, Kruzhilin G (1967) Heat transfer and pressure drop during condensation of steam in a horizontal tube and in a bundle of tubes. Int J Heat Mass Transf 10(3):361–373. https://doi.org/10.1016/0017-9310(67)90152-4

    Article  Google Scholar 

  26. Volkov D (1970) Generalization of the experimental data on heat transfer in condensing of moving steam inside horizontal pipes at low and moderate velocities (In Russian). Works of CKTI 3:295–305

    Google Scholar 

  27. Cavallini A (1974) Zecchin R dimensionless correlation for heat transfer in forced convection condensation. In: Proceedings of the Sixth International Heat Transfer Conference. pp 309–313

  28. Shah M (1979) A general correlation for heat transfer during film condensation inside pipes. Int J Heat Mass Transf 22(4):547–556. https://doi.org/10.1016/0017-9310(79)90058-9

    Article  Google Scholar 

  29. Breber G, Palen J, Taborek J (1980) Prediction of horizontal tubeside condensation of pure components using flow regime criteria. J Heat Transf 102(3):471–476. https://doi.org/10.1115/1.3244325

    Article  Google Scholar 

  30. Soliman H (1986) The mist-annular transition during condensation and its influence on the heat transfer mechanism. Int J Multiphase Flow 12(2):277–288. https://doi.org/10.1016/0301-9322(86)90030-3

    Article  MATH  Google Scholar 

  31. Chen S, Gerner F, Tien C (1987) General film condensation correlations. Exp Heat Transfer Int J 1(2):93–107. https://doi.org/10.1080/08916158708946334

    Article  Google Scholar 

  32. Kaushik N, Azer N (1988) A general heat transfer correlation for condensation inside internally finned tubes. ASHRAE Trans 94:261–279

    Google Scholar 

  33. Bivens D, Yokozeki A (1994) Heat transfer coefficients and transport properties for alternative refrigerants. In: International Refrigeration and Air Conditioning Conference, School of Mechanical Engineering. pp 299–304

  34. Fujii T (1995) Enhancement to condensing heat transfer-new developments. J Enhanced Heat Transfer 2(1–2). https://doi.org/10.1615/JEnhHeatTransf.v2.i1-2.140

    Article  Google Scholar 

  35. Yu J, Koyama S, Haraguchi H, Momoki S, Ishibashi A (1996) Boiling and condensation of alternative refrigerants in a horizontal smooth tube. 九州大学機能物質科学研究所報告 9 (2):137–154

  36. Tandon T, Varma H, Gupta C (1995) Heat transfer during forced convection condensation inside horizontal tube. Int J Refrig 18(3):210–214. https://doi.org/10.1016/0140-7007(95)90316-r

    Article  Google Scholar 

  37. Singh A, Ohadi M, Dessiatoun S (1996) Empirical modeling of stratified-wavy flow condensation heat transfer in smooth horizontal tubes. ASHRAE Transac 102(2):596–603

    Google Scholar 

  38. Moser K, Webb R, Na B (1998) A new equivalent Reynolds number model for condensation in smooth tubes. J Heat Transf 120(2):410–417. https://doi.org/10.1115/1.2824265

    Article  Google Scholar 

  39. Dobson M, Chato J (1998) Condensation in smooth horizontal tubes. J Heat Transf 120(1):193–213. https://doi.org/10.1115/1.2830043

    Article  Google Scholar 

  40. Tang L, Ohadi M, Johnson A (2000) Flow Condensation in Smooth and Micro-fin Tubes with HCFC-22, HFC-134a and HFC-410 Refrigerants. Part II: Design Equations. J Enhanced Heat Transfer 7(5). https://doi.org/10.1615/JEnhHeatTransf.v7.i5.20

    Article  Google Scholar 

  41. Naulboonrueng T, Kaewon J, Wongwises S (2003) Two-phase condensation heat transfer coefficients of HFC–134a at high mass flux in smooth and micro-fin tubes. Int commun heat mass transfer 30(4):577–590. https://doi.org/10.1016/S0735-1933(03)00086-1

    Article  Google Scholar 

  42. Thome J, El Hajal J, Cavallini A (2003) Condensation in horizontal tubes, part 2: new heat transfer model based on flow regimes. Int J Heat Mass Transf 46(18):3365–3387. https://doi.org/10.1016/S0017-9310(03)00140-6

    Article  MATH  Google Scholar 

  43. El Hajal J, Thome J, Cavallini A (2003) Condensation in horizontal tubes, part 1: two-phase flow pattern map. Int J Heat Mass Transf 46(18):3349–3363. https://doi.org/10.1016/S0017-9310(03)00139-X

    Article  MATH  Google Scholar 

  44. Cavallini A, Del Col D, Doretti L, Matkovic M, Rossetto L, Zilio C, Censi G (2006) Condensation in horizontal smooth tubes: a new heat transfer model for heat exchanger design. Heat transfer eng 27(8):31–38. https://doi.org/10.1080/01457630600793970

    Article  Google Scholar 

  45. Park K, Jung D, Seo T (2008) Flow condensation heat transfer characteristics of hydrocarbon refrigerants and dimethyl ether inside a horizontal plain tube. Int J Multiphase Flow 34(7):628–635. https://doi.org/10.1016/j.ijmultiphaseflow.2008.01.008

    Article  Google Scholar 

  46. Shah M (2009) An improved and extended general correlation for heat transfer during condensation in plain tubes. Hvac&R Res 15(5):889–913. https://doi.org/10.1080/10789669.2009.10390871

    Article  Google Scholar 

  47. Sapali S, Patil P (2009) Two-phase condensation heat transfer coefficients and pressure drops of R404a for different condensing temperatures in a smooth and micro-fin tube. Int J Eng Sci Technol 1(2):43–58

    Google Scholar 

  48. Sapali S, Patil PA (2010) Heat transfer during condensation of HFC-134a and R-404A inside of a horizontal smooth and micro-fin tube. Exp Thermal Fluid Sci 34(8):1133–1141. https://doi.org/10.1016/j.expthermflusci.2010.03.013

    Article  Google Scholar 

  49. Numrich R, Müller J (2010) Filmwise Condensation of Pure Vapors. VDI Heat Atlas, VDI-Gesellschaft Verfahrenstechnik und Chemieningenieurwesen, Springer, p. 905–918. doi:https://doi.org/10.1007/978-3-540-77877-6

  50. Bohdal T, Charun H, Sikora M (2011) Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels. Int J Heat Mass Transf 54(9–10):1963–1974. https://doi.org/10.1016/j.ijheatmasstransfer.2011.01.005

    Article  Google Scholar 

  51. Iqbal O, Bansal P (2012) In-tube condensation heat transfer of CO2 at low temperatures in a horizontal smooth tube. Int J Refrig 35(2):270–277. https://doi.org/10.1016/j.ijrefrig.2011.10.015

    Article  Google Scholar 

  52. Balcilar M, Aroonrat K, Dalkilic A, Wongwises S (2013) A numerical correlation development study for the determination of Nusselt numbers during boiling and condensation of R134a inside smooth and corrugated tubes. Int Commun Heat Mass Transfer 48:141–148. https://doi.org/10.1016/j.icheatmasstransfer.2013.08.012

    Article  Google Scholar 

  53. Milkie JA (2014) Condensation of hydrocarbon and zeotropic hydrocarbon/refrigerant mixtures in horizontal tubes. Georgia Institute of Technology

  54. Shah M (2015) A new flow pattern based general correlation for heat transfer during condensation in horizontal tubes. Proceedings of the 15th International Heat Transfer Conference IHTC-15, August 10–15, 2014, Kyoto, Japan. pp. 1–15

  55. Macdonald M, Garimella S (2016) Hydrocarbon condensation in horizontal smooth tubes: Part II–Heat transfer coefficient and pressure drop modeling. Int J Heat Mass Transf 93:1248–1261. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.019

    Article  Google Scholar 

  56. Zhuang X, Chen G, Zou X, Song Q, Gong M (2017) Experimental investigation on flow condensation of methane in a horizontal smooth tube. Int J Refrig 78:193–214. https://doi.org/10.1016/j.ijrefrig.2017.03.021

    Article  Google Scholar 

  57. Dorao C, Fernandino M (2017) Dominant dimensionless groups controlling heat transfer coefficient during flow condensation inside pipes. Int J Heat Mass Transf 112:465–479. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.104

    Article  Google Scholar 

  58. Dorao C, Fernandino M (2018) Simple and general correlation for heat transfer during flow condensation inside plain pipes. Int J Heat Mass Transf 122:290–305. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.097

    Article  Google Scholar 

  59. Rifert V, Sereda V, Gorin V, Barabash P, Solomakha A (2018) Substantiation and the range of application of a new method for heat transfer prediction in condensing inside plain tubes. Energetika 64(3):146–154. https://doi.org/10.6001/energetika.v64i3.3807

    Article  Google Scholar 

  60. Camaraza-Medina Y, Hernandez-Guerrero A, Luviano-Ortiz JL, Mortensen-Carlson K, Cruz-Fonticiella OM, García-Morales OF (2019) New model for heat transfer calculation during film condensation inside pipes. Int J Heat Mass Transf 128:344–353. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.012

    Article  Google Scholar 

  61. Yusufova V (1953) Experimental investigation of the heat transfer in condensing of benzene and toluene inside horizontal condensers (In Russian). Izvestia of the Azerbaijan Acad Sci 18:22–29

    Google Scholar 

  62. Gorodinskaya S (1954) Investigation of the heat transfer in condensing inside horizontal pipes (In Russian). Izvestia of the Kiev Polytechnic Institute 13:158–170

    Google Scholar 

  63. Boyko L (1966) Investigation of heat transfer in steam condensing inside a pipe (In Russian). Heat transfer in the elements of power plants:197–212

  64. Said S (1983) Augmentation of condensation heat transfer of R-113 by internally finned tubes and twisted tape inserts. Kansas State University, Manhattan

    Google Scholar 

  65. Venkatesh K (1984) Augmentation of condensation heat transfer of R-11 by internally finned tubes. Kansas State University, Manhattan

    Google Scholar 

  66. Bae S, Maulbetsch J, Rohsenow W (1969) Refrigerant forced-convection condensation inside horizontal tubes. Massachusetts Inst. of Tech., Cambridge Heat Transfer Lab

  67. Traviss D, Baron A, Rohsenow W (1971) Forced-convection condensation inside tubes. Massachusetts Inst. of Tech., Cambridge Heat Transfer Lab

  68. Cavallini A, Censi G, Del Col D, Doretti L, Longo G, Rossetto L (2001) Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube. Int J Refrig 24(1):73–87. https://doi.org/10.1016/S0140-7007(00)00070-0

    Article  Google Scholar 

  69. Borishansky V, Volkov D, Ivashchenko N, Krektunov O (1975) Application of thermodynamic similarity method for generalization of experimental data on film-type condensation (In Russian). Works of CKTI (131):122–138

  70. Royal J (1975) Augmentation of horizontal in-tube condensation of steam. Iowa State University, Ames

    Book  Google Scholar 

  71. Shao D, Granryd E (2000) Flow pattern, heat transfer and pressure drop in flow condensation part I: pure and azeotropic refrigerants. HVAC&R Res 6(2):175–195. https://doi.org/10.1080/10789669.2000.10391256

    Article  Google Scholar 

  72. Huang X, Ding G, Hu H, Zhu Y, Peng H, Gao Y, Deng B (2010) Influence of oil on flow condensation heat transfer of R410A inside 4.18 mm and 1.6 mm inner diameter horizontal smooth tubes. Int J Refrig 33(1):158–169. https://doi.org/10.1016/j.ijrefrig.2009.09.008

    Article  Google Scholar 

  73. Park J, Vakili-Farahani F, Consolini L, Thome J (2011) Experimental study on condensation heat transfer in vertical minichannels for new refrigerant R1234ze (E) versus R134a and R236fa. Exp Thermal Fluid Sci 35(3):442–454. https://doi.org/10.1016/j.expthermflusci.2010.11.006

    Article  Google Scholar 

  74. Ghim G, Lee J (2017) Condensation heat transfer of low GWP ORC working fluids in a horizontal smooth tube. Int J Heat Mass Transf 104:718–728. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.090

    Article  Google Scholar 

  75. Kim Y, Jang J, Hrnjak P, Kim M (2009) Condensation heat transfer of carbon dioxide inside horizontal smooth and microfin tubes at low temperatures. J Heat Transf 131(2):021501. https://doi.org/10.1115/1.2993139

    Article  Google Scholar 

  76. Thome J (2003) On recent advances in modeling of two-phase flow and heat transfer. Heat Transfer Eng 24(6):46–59. https://doi.org/10.1080/714044414

    Article  Google Scholar 

  77. Lim I, Bankoff S, Tankin R, Yuen M (1981) Concurrent Steam/water Flow in a Horizontal Channel. Division of Accident Evaluation, Office of Nuclear Regulatory Research, US Nuclear Regulatory Commission

  78. Ferreira C, Newell T, Chato J, Nan X (2003) R404A condensing under forced flow conditions inside smooth, microfin and cross-hatched horizontal tubes. Int J Refrig 26(4):433–441. https://doi.org/10.1016/S0140-7007(02)00156-1

    Article  Google Scholar 

  79. Smit F, Meyer J (2002) Condensation heat transfer coefficients of the zeotropic refrigerant mixture R-22/R-142b in smooth horizonal tubes. Int J Therm Sci 41(7):625–630

    Article  Google Scholar 

  80. Kosky P, Staub F (1971) Local condensing heat transfer coefficients in the annular flow regime. AICHE J 17(5):1037–1043. https://doi.org/10.1002/aic.690170505

    Article  Google Scholar 

  81. Rouhani S, Axelsson E (1970) Calculation of void volume fraction in the subcooled and quality boiling regions. Int J Heat Mass Transf 13(2):383–393. https://doi.org/10.1016/0017-9310(70)90114-6

    Article  Google Scholar 

  82. Labuntsov D (1957) Heat transfer in film condensation of pure steam on vertical surfaces and horizontal tubes. Teploenergetika 4(7):72–79

    Google Scholar 

  83. Suliman R, Liebenberg L, Meyer J (2009) Improved flow pattern map for accurate prediction of the heat transfer coefficients during condensation of R-134a in smooth horizontal tubes and within the low-mass flux range. Int J Heat Mass Transf 52(25–26):5701–5711. https://doi.org/10.1016/j.ijheatmasstransfer.2009.08.017

    Article  MATH  Google Scholar 

  84. Jassim E, Newell T, Chato J (2008) Prediction of two-phase condensation in horizontal tubes using probabilistic flow regime maps. Int J Heat Mass Transf 51(3–4):485–496. https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.021

    Article  MATH  Google Scholar 

  85. Van Rooyen E, Christians M, Liebenberg L, Meyer J (2010) Probabilistic flow pattern-based heat transfer correlation for condensing intermittent flow of refrigerants in smooth horizontal tubes. Int J Heat Mass Transf 53(7–8):1446–1460. https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.005

    Article  MATH  Google Scholar 

  86. Vera-García F, García-Cascales J, Corberán-Salvador J, Gonzálvez-Maciá J, Fuentes-Díaz D (2007) Assessment of condensation heat transfer correlations in the modelling of fin and tube heat exchangers. Int J Refrig 30(6):1018–1028. https://doi.org/10.1016/j.ijrefrig.2007.01.005

    Article  Google Scholar 

  87. Müller J (1992) Wärmeübergang bei der Filmkondensation und seine Einordnung in Wärme- und Stoffübertragungsvorgänge bei Filmströmungen. Fortsch Ber VDI, Reihe 3(270)

  88. Agra Ö, Teke I (2012) Determination of the heat transfer coefficient during annular flow condensation in smooth horizontal tubes. J Therm Sci Technol 32(2):151–159

    Google Scholar 

  89. Lee H, Mudawar I, Hasan M (2013) Flow condensation in horizontal tubes. Int J Heat Mass Transf 66:31–45. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.010

    Article  Google Scholar 

  90. Macdonald M, Garimella S (2016) Hydrocarbon condensation in horizontal smooth tubes: Part I–Measurements. Int J Heat Mass Transf 93:75–85. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.018

    Article  Google Scholar 

  91. Fries S, Skusa S, Luke A (2019) Heat transfer and pressure drop of condensation of hydrocarbons. Heat Mass Transf 55(1):33–40. https://doi.org/10.1007/s00231-018-2318-2

    Article  Google Scholar 

  92. Li P, Chen J, Norris S (2018) Flow condensation heat transfer of CO 2 in a horizontal tube at low temperatures. Appl Therm Eng 130:561–570. https://doi.org/10.1016/j.applthermaleng.2017.11.004

    Article  Google Scholar 

  93. Rifert V, Gorin V, Sereda V, Treputnev V (2017) An Improved Heat Transfer Prediction Model for Film Condensation inside a Tube with Interphacial Shear Effect. World Academy of Science, Engineering and Technology. Int J Mech Aerosp Ind Mechatronic Manuf Eng 11(8):1376–1385

    Google Scholar 

  94. Jeon S, Hong S, Park J, Seul K, Park G (2013) Assessment of horizontal in-tube condensation models using MARS code. Part I: Stratified flow condensation. Nucl Eng Des 254:254–265. https://doi.org/10.1016/j.nucengdes.2012.10.006

    Article  Google Scholar 

  95. Jeon S, Hong S, Park J, Seul K, Park G (2013) Assessment of horizontal in-tube condensation models using MARS code. Part II: Annular flow condensation. Nucl Eng Des 262:510–524. https://doi.org/10.1016/j.nucengdes.2013.05.014

    Article  Google Scholar 

  96. Demir H, Ağra Ö, Atayılmaz ŞÖ (2009) Generalized neural network model of alternative refrigerant (R600a) inside a smooth tube. Int Commun Heat Mass Transfer 36(7):744–749. https://doi.org/10.1016/j.icheatmasstransfer.2009.03.024

    Article  Google Scholar 

  97. Balcilar M, Aroonrat K, Dalkilic A, Wongwises S (2013) A generalized numerical correlation study for the determination of pressure drop during condensation and boiling of R134a inside smooth and corrugated tubes. Int Commun Heat Mass Transfer 49:78–85. https://doi.org/10.1016/j.icheatmasstransfer.2013.08.010

    Article  Google Scholar 

  98. Martín-Valdepeñas J, Jiménez M, Martín-Fuertes F, Benitez J (2005) Comparison of film condensation models in presence of non-condensable gases implemented in a CFD Code. Heat Mass Transf 41(11):961–976. https://doi.org/10.1007/s00231-004-0606-5

    Article  Google Scholar 

  99. Noori Rahim Abadi S, Meyer J (2018) Numerical investigation into the inclination effect on conjugate pool boiling and the condensation of steam in a passive heat removal system. Int J Heat Mass Transf 122:1366–1382. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.093

    Article  Google Scholar 

  100. Taler D (2019) Determination of сorrelations for the heat transfer coefficient on the air side using CFD simulations. Numerical Modelling and Experimental Testing of Heat Exchangers (pp. 525–542). Springer International Publishing AG. doi:https://doi.org/10.1007/978-3-319-91128-1_17

    Google Scholar 

  101. Rifert V, Sereda V, Gorin V, Barabash P, Solomakha A (2018) Restoration of correctness and improvement of a model for film condensation inside tubes. Bulg Chem Commun 50(K):58–69

    Google Scholar 

  102. Rifert V, Zadiraka V (1978) Condensation of steam inside a smooth and profiled horizontal tube (in Russian). Teploenergetika Moscow 8:77–88

    Google Scholar 

  103. Afroz H, Miyara A, Tsubaki K (2008) Heat transfer coefficients and pressure drops during in-tube condensation of CO2/DME mixture refrigerant. Int J Refrig 31(8):1458–1466. https://doi.org/10.1016/j.ijrefrig.2008.02.009

    Article  Google Scholar 

  104. Kinney R, Sparrow E (1970) Turbulent flow, heat transfer, and mass transfer in a tube with surface suction. J Heat Transf 92(1):117–124. https://doi.org/10.1115/1.3449600

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Sereda.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rifert, V., Sereda, V., Gorin, V. et al. Heat transfer during film condensation inside plain tubes. Review of experimental research. Heat Mass Transfer 56, 691–713 (2020). https://doi.org/10.1007/s00231-019-02744-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02744-5

Navigation