Skip to main content
Log in

Deswelling studies of pH and temperature-sensitive ultra-low cross-linked microgels with cross-linked cores

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Microgels prepared without exogenous crosslinker have recently been explored for diverse applications in biotechnology. However, our fundamental understanding of structure-property relationships for this class of materials is still lacking, especially in the context of more complex structures such as core-shell particles. In this article, core-shell microgels were prepared by seed-mediated, surfactant-free emulsion polymerization using a N,N′-methylenebis (acrylamide) (BIS) cross-linked poly(N-isopropylacrylamide) (pNIPAm) microgel core upon which a crosslinker-free poly(N-isopropylacrylamide)-co-acrylic acid (ULC10AAc) shell was synthesized. Dynamic light scattering (DLS) and phase analysis light scattering (PALS) measurements show that the hydrodynamic radius and electrophoretic mobility of the core-shell microgels increase significantly with increasing pH due to the pH responsive ULC10AAc shell, while the temperature sensitivity of the microgels is also strongly pH dependent. The turbidity and the temperature-dependent scattering intensity plots of microgels at different pH also provide insight into the charged state of the microgels under the studied conditions. For example, we observe multiple temperature-induced transitions when the pH is either 4.5 or 6.5, illustrating that the core and shell domains, while remaining mechanically connected, are only partially coupled thermodynamically. These studies provide insight into the perturbation of ULC microgel behavior that might be brought about due to the presence of a higher density core region. Complex architectures such as these are relevant in biotechnology applications where the soft, deformable ULC shell is advantageous to control the polymer-biology interface, but a denser core region might be required to obtain a higher loading of encapsulated therapeutics, tracking dyes, or oligonucleotides. Thus, it is important to understand the synthetic conditions that allow a ULC shell to remain “ULC-like” despite the presence of a denser core.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Peppas NA, Merrill EW (1977) Crosslinked poly (vinyl alcohol) hydrogels as swollen elastic networks. J Appl Polym Sci 21(7):1763–1770. https://doi.org/10.1002/app.1977.070210704

    Article  CAS  Google Scholar 

  2. Jones CD, Lyon LA (2000) Synthesis and characterization of multiresponsive core-shell microgels. Macromolecules 33(22):8301–8306. https://doi.org/10.1021/ma001398m

    Article  CAS  Google Scholar 

  3. Pelton RH, Chibante P (1986) Preparation of aqueous latexes with N-isopropylacrylamide. Colloids Surf 20(3):247–256. https://doi.org/10.1016/0166-6622(86)80274-8

    Article  CAS  Google Scholar 

  4. Zhou S, Chu B (1998) Synthesis and volume phase transition of poly (methacrylic acid-co-N-isopropylacrylamide) microgel particles in water. J Phys Chem B 102(8):1364–1371. https://doi.org/10.1021/JP972990P

    Article  CAS  Google Scholar 

  5. Crowther HM, Saunders BR, Mears SJ, Cosgrove T, Vincent B, King SM, Yu G-E (1999) Poly (NIPAM) microgel particle de-swelling: a light scattering and small-angle neutron scattering study. Colloids Surf A Physicochem Eng Asp 152(3):327–333. https://doi.org/10.1016/S0927-7757(98)00875-9

    Article  CAS  Google Scholar 

  6. Saunders BR (2004) On the structure of poly(N-isopropylacrylamide) microgel particles. Langmuir 20(10):3925–3932. https://doi.org/10.1021/la036390v

    Article  CAS  PubMed  Google Scholar 

  7. Gaulding JC, Spears MW, Lyon LA (2013) Plastic deformation, wrinkling, and recovery in microgel multilayers. Polym Chem 4(18):4890–4896. https://doi.org/10.1039/C3PY00173C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Debord JD, Lyon LA (2003) Synthesis and characterization of pH-responsive copolymer microgels with tunable volume phase transition temperatures. Langmuir 19(18):7662–7664. https://doi.org/10.1021/la0342924

    Article  CAS  Google Scholar 

  9. Kim J, Nayak S, Lyon LA (2005) Bioresponsive hydrogel microlenses. J Am Chem Soc 127(26):9588–9592. https://doi.org/10.1021/ja0519076

    Article  CAS  PubMed  Google Scholar 

  10. Karg M, Pich A, Hellweg T, Hoare T, Lyon LA, Crassous JJ, Suzuki D, Gumerov RA, Schneider S, Potemkin II, Richtering W (2019) Nanogels and microgels: from model colloids to applications, recent developments, and future trends. Langmuir 35(19):6231–6255. https://doi.org/10.1021/acs.langmuir.8b04304

    Article  CAS  PubMed  Google Scholar 

  11. Hoare T, Pelton R (2007) Engineering glucose swelling responses in poly(N-isopropylacrylamide)-based microgels. Macromolecules 40(3):670–678. https://doi.org/10.1021/ma062254w

    Article  CAS  Google Scholar 

  12. Smeets NMB, Hoare T (2013) Designing responsive microgels for drug delivery applications. Journal of Polymer Science Part a-Polymer Chemistry 51(14):3027–3043. https://doi.org/10.1002/pola.26707

    Article  CAS  Google Scholar 

  13. Kim J, Singh N, Lyon LA (2006) Label-free biosensing with hydrogel microlenses. Angew Chem Int Ed 45(9):1446–1449. https://doi.org/10.1002/anie.200503102

    Article  CAS  Google Scholar 

  14. Serpe MJ, Yarmey KA, Nolan CM, Lyon LA (2005) Doxorubicin uptake and release from microgel thin films. Biomacromolecules 6(1):408–413. https://doi.org/10.1021/bm049455x

    Article  CAS  PubMed  Google Scholar 

  15. Smith MH, Lyon LA (2012) Multifunctional nanogels for siRNA delivery. Acc Chem Res 45(7):985–993. https://doi.org/10.1021/ar200216f

    Article  CAS  PubMed  Google Scholar 

  16. Islam MR, Li X, Smyth K, Serpe MJ (2013) Polymer-based muscle expansion and contraction. Angew Chem Int Ed 52(39):10330–10333. https://doi.org/10.1002/anie.201303475

    Article  CAS  Google Scholar 

  17. Islam MR, Serpe MJ (2014) A novel label-free colorimetric assay for DNA concentration in solution. Anal Chim Acta 843:83–88. https://doi.org/10.1016/j.aca.2014.06.038

    Article  CAS  PubMed  Google Scholar 

  18. Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interf Sci 85(1):1–33. https://doi.org/10.1016/S0001-8686(99)00023-8

    Article  CAS  Google Scholar 

  19. Daly E, Saunders BR (2000) Temperature-dependent electrophoretic mobility and hydrodynamic radius measurements of poly(N-isopropylacrylamide) microgel particles: structural insights. Phys Chem Chem Phys 2(14):3187–3193. https://doi.org/10.1039/b002678f

    Article  CAS  Google Scholar 

  20. Saunders BR, Vincent B (1996) Thermal and osmotic deswelling of poly (NIPAM) microgel particles. J Chem Soc Faraday Trans 92(18):3385–3389. https://doi.org/10.1039/ft9969203385

    Article  CAS  Google Scholar 

  21. Wu C, Zhou S, Au-Yeung SCF, Jiang S (1996) Volume phase transition of spherical microgel particles. Angew Makromol Chem 240:123–136

    Article  CAS  Google Scholar 

  22. Zhu PW, Napper DH (1994) Entanglement knotting in globule-to-coil transitions of poly(N-isopropylacrylamide) at interfaces. J Colloid Interface Sci 168(2):380–385. https://doi.org/10.1006/jcis.1994.1433

    Article  CAS  Google Scholar 

  23. Hoare T, Pelton R (2004) Functional group distributions in carboxylic acid containing poly(N-isopropylacrylamide) microgels. Langmuir 20(6):2123–2133. https://doi.org/10.1021/la0351562

    Article  CAS  PubMed  Google Scholar 

  24. Hoare T, Pelton R (2007) Functionalized microgel swelling: comparing theory and experiment. J Phys Chem B 111(41):11895–11906. https://doi.org/10.1021/jp072360f

    Article  CAS  PubMed  Google Scholar 

  25. Bachman H, Brown AC, Clarke KC, Dhada KS, Douglas A, Hansen CE, Herman E, Hyatt JS, Kodlekere P, Meng Z, Saxena S, Spears Jr MW, Welsch N, Lyon LA (2015) Ultrasoft, highly deformable microgels. Soft Matter 11(10):2018–2028. https://doi.org/10.1039/C5SM00047E

    Article  CAS  PubMed  Google Scholar 

  26. Brown AC, Stabenfeldt SE, Ahn B, Hannan RT, Dhada KS, Herman ES, Stefanelli V, Guzzetta N, Alexeev A, Lam WA, Lyon LA, Barker TH (2014) Ultrasoft microgels displaying emergent platelet-like behaviours. Nat Mater 13(12):1108–1114. https://doi.org/10.1038/nmat4066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hansen CE, Myers DR, Baldwin WH, Sakurai Y, Meeks SL, Lyon LA, Lam WA (2017) Platelet-microcapsule hybrids leverage contractile force for targeted delivery of hemostatic agents. ACS Nano 11(6):5579–5589. https://doi.org/10.1021/acsnano.7b00929

    Article  CAS  PubMed  Google Scholar 

  28. Gaulding JC, South AB, Lyon LA (2013) Hydrolytically degradable shells on thermoresponsive microgels. Colloid Polym Sci 291(1):99–107. https://doi.org/10.1007/s00396-012-2692-0

    Article  CAS  Google Scholar 

  29. Hu X, Tong Z, Lyon LA (2010) Multicompartment core/shell microgels. J Am Chem Soc 132(33):11470–11472. https://doi.org/10.1021/ja105616v

    Article  CAS  PubMed  Google Scholar 

  30. Jones CD, Lyon LA (2003) Dependence of shell thickness on core compression in acrylic acid modified poly(N-isopropylacrylamide) core/shell microgels. Langmuir 19(11):4544–4547. https://doi.org/10.1021/la034392+

    Article  CAS  Google Scholar 

  31. Jones CD, Lyon LA (2003) Shell-restricted swelling and core compression in poly(N-isopropylacrylamide) core-shell microgels. Macromolecules 36(6):1988–1993. https://doi.org/10.1021/ma021079q

    Article  CAS  Google Scholar 

  32. Berndt I, Pedersen JS, Lindner P, Richtering W (2006) Structure of doubly temperature sensitive core-shell microgels based on poly-N-isopropylacrylamide and poly-N-isopropylmethacrylamide. Progr Colloid Polym Sci 133:35–40. https://doi.org/10.1007/2882_048

    Article  CAS  Google Scholar 

  33. Berndt I, Pedersen JS, Lindner P, Richtering W (2006) Influence of shell thickness and cross-link density on the structure of temperature-sensitive poly-N-isopropylacrylamide-poly-N-isopropylmethacrylamide Core-Shell microgels investigated by small-angle neutron scattering. Langmuir 22(1):459–468. https://doi.org/10.1021/la052463u

    Article  CAS  PubMed  Google Scholar 

  34. Zeiser M, Freudensprung I, Hellweg T (2012) Linearly thermoresponsive core–shell microgels: towards a new class of nanoactuators. Polymer 53(26):6096–6101. https://doi.org/10.1016/j.polymer.2012.10.001

    Article  CAS  Google Scholar 

  35. Pinprayoon O, Groves R, Lovell PA, Tungchaiwattana S, Saunders BR (2011) Polymer films prepared using ionically crosslinked soft core–shell nanoparticles: a new class of nanostructured ionomers. Soft Matter 7(1):247–257. https://doi.org/10.1039/C0SM00447B

    Article  CAS  Google Scholar 

  36. Tungchaiwattana S, Groves R, Lovell PA, Pinprayoon O, Saunders BR (2012) Tuning the mechanical properties of nanostructured ionomer films by controlling the extents of covalent crosslinking in core-shell nanoparticles. J Mater Chem 22(12):5840–5847. https://doi.org/10.1039/C2JM16223G

    Article  CAS  Google Scholar 

  37. Suzuki D, McGrath JG, Kawaguchi H, Lyon LA (2007) Colloidal crystals of thermosensitive, core/shell hybrid microgels. J Phys Chem C 111(15):5667–5672. https://doi.org/10.1021/jp068535n

    Article  CAS  Google Scholar 

  38. Serpe MJ, Jones CD, Lyon LA (2003) Layer-by-layer deposition of thermoresponsive microgel thin films. Langmuir 19(21):8759–8764. https://doi.org/10.1021/la034391h

    Article  CAS  Google Scholar 

  39. South AB, Whitmire RE, García AJ, Lyon LA (2009) Centrifugal deposition of microgels for the rapid assembly of nonfouling thin films. ACS Appl Mater Interfaces 1(12):2747–2754. https://doi.org/10.1021/am9005435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70(3):1214–1218. https://doi.org/10.1063/1.437602

    Article  CAS  Google Scholar 

  41. Matsuo ES, Tanaka T (1988) Kinetics of discontinuous volume–phase transition of gels. J Chem Phys 89(3):1695–1703. https://doi.org/10.1063/1.455115

    Article  CAS  Google Scholar 

  42. Cors M, Wrede O, Wiehemeier L, Feoktystov A, Cousin F, Hellweg T, Oberdisse J (2019) Spatial distribution of core monomers in acrylamide-based core-shell microgels with linear swelling behaviour. Sci Rep 9(1):13812. https://doi.org/10.1038/s41598-019-50164-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Islam MR, Tumbarello M, Lyon LA (2019) Deswelling induced morphological changes in dual pH- and temperature-responsive ultra-low cross-linked poly(N-isopropyl acrylamide)-co-acrylic acid microgels. Colloid Polym Sci 297(5):667–676. https://doi.org/10.1007/s00396-019-04492-8

    Article  CAS  Google Scholar 

  44. Jones CD, Lyon LA (2003) Dependence of shell thickness on vore compression in acrylic acid modified poly(N-isopropylacrylamide) core/shell microgels. Langmuir 19(11):4544–4547. https://doi.org/10.1021/la034392+

    Article  CAS  Google Scholar 

  45. Jones CD, McGrath JG, Lyon LA (2004) Characterization of cyanine dye-labeled poly(N-isopropylacrylamide) core/shell microgels using fluorescence resonance energy transfer. J Phys Chem B 108(34):12652–12657. https://doi.org/10.1021/jp0361834

    Article  CAS  Google Scholar 

Download references

Funding

The study is financially supported by the National Institute of Health (R01HL130918).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Andrew Lyon.

Ethics declarations

Conflict of interest

Dr. Lyon is a co-founder and holds an equity stake in SelSym, Inc., an early-stage biotechnology company aimed at the commercialization of artificial platelet technologies based on ULC microgels.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2.14 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.R., Lyon, L.A. Deswelling studies of pH and temperature-sensitive ultra-low cross-linked microgels with cross-linked cores. Colloid Polym Sci 298, 395–405 (2020). https://doi.org/10.1007/s00396-020-04620-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04620-9

Keywords

Navigation