Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

C1orf35 contributes to tumorigenesis by activating c-MYC transcription in multiple myeloma

Abstract

Multiple myeloma (MM) is a clinically and biologically heterogenous event that accounts for approximately 10% of all hematological malignancies. Chromosome 1 open reading frame 35 (C1orf35) is a gene cloned and identified in our laboratory from a MM cell line (GenBank: AY137773), but little is known about its function. In the current study, we have confirmed that C1orf35 is a candidate oncogene, and it can promote cell cycle progression from G1 to S. Later, we found that C1orf35 is able to affect the cell proliferation by modulating the expression of c-MYC (v-myc myelocytomatosis viral oncogene homolog), and the oncogenic property of C1orf35 can be rescued by c-MYC inhibition. Herein, we found positive association between C1orf35 and c-MYC in MM patients and in MM cell lines. The correlation analysis of the genes coamplified in MM patients from GEO datasets showed a correlation between C1orf35 and c-MYC, and the expression data of different stages of plasma cell neoplasm acquired from GEO datasets showed that the expression of C1orf35 increase with the progression of the disease. This indicates that C1orf35 may play a role in the disease progression. Moreover, C1orf35 can modulate c-MYC expression and rescue c-MYC transcription inhibited by Act D. Finally, we have shown that C1orf35 activates c-MYC transcription by binding to the i-motif of Nuclease hypersensitivity element III1 (NHE III1) in the c-MYC promoter. Not only does our current study advance our knowledge of the pathogenesis and therapeutic landscape of MM, but also of other cancer types and diseases that are initiated with deregulated c-MYC transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overexpression of C1orf35 promotes tumorigenesis in BALB/c nude mice.
Fig. 2: Overexpression of C1orf35 promotes cell cycle progression from G1 to S.
Fig. 3: C1orf35 displayed positive association with c-MYC in both MM patients and MM cell lines.
Fig. 4: C1orf35 affect c-MYC expression and cell proliferation in MM cells.
Fig. 5: Clorf35 can reverse the c-MYC transcription inhibited by Act D.
Fig. 6: The mechanism of C1orf35 activation of c-MYC transcription.

Similar content being viewed by others

References

  1. Hu J, Hu WX. Targeting signaling pathways in multiple myeloma: pathogenesis and implication for treatments. Cancer Lett. 2018;414:214–21.

    CAS  PubMed  Google Scholar 

  2. Manier S, Salem KZ, Park J, Landau DA, Getz G, Ghobrial IM. Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol. 2017;14:100–13.

    CAS  PubMed  Google Scholar 

  3. Kumar SK, Rajkumar SV. The multiple myelomas—current concepts in cytogenetic classification and therapy. Nat Rev Clin Oncol. 2018;15:409–21.

    CAS  PubMed  Google Scholar 

  4. Hanamura I, Stewart JP, Huang Y, Zhan F, Santra M, Sawyer JR, et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood. 2006;108:1724–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Le Baccon P, Leroux D, Dascalescu C, Duley S, Marais D, Esmenjaud E, et al. Novel evidence of a role for chromosome 1 pericentric heterochromatin in the pathogenesis of B-cell lymphoma and multiple myeloma. Genes Chromosom Cancer. 2001;32:250–64.

    PubMed  Google Scholar 

  6. Carrasco DR, Tonon G, Huang Y, Zhang Y, Sinha R, Feng B, et al. High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell. 2006;9:313–25.

    CAS  PubMed  Google Scholar 

  7. Marzin Y, Jamet D, Douet-Guilbert N, Morel F, Le Bris MJ, Morice P, et al. Chromosome 1 abnormalities in multiple myeloma. Anticancer Res. 2006;26:953–9.

    CAS  PubMed  Google Scholar 

  8. Sawyer JR. The prognostic significance of cytogenetics and molecular profiling in multiple myeloma. Cancer Genet. 2011;204:3–12.

    PubMed  Google Scholar 

  9. Decaux O, Lode L, Magrangeas F, Charbonnel C, Gouraud W, Jezequel P, et al. Prediction of survival in multiple myeloma based on gene expression profiles reveals cell cycle and chromosomal instability signatures in high-risk patients and hyperdiploid signatures in low-risk patients: a study of the Intergroupe Francophone du Myelome. J Clin Oncol. 2008;26:4798–805.

    CAS  PubMed  Google Scholar 

  10. Avet-Loiseau H, Li C, Magrangeas F, Gouraud W, Charbonnel C, Harousseau JL, et al. Prognostic significance of copy-number alterations in multiple myeloma. J Clin Oncol. 2009;27:4585–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Avet-Loiseau H, Attal M, Campion L, Caillot D, Hulin C, Marit G, et al. Long-term analysis of the IFM 99 trials for myeloma: cytogenetic abnormalities [t(4;14), del(17p), 1q gains] play a major role in defining long-term survival. J Clin Oncol. 2012;30:1949–52.

    PubMed  Google Scholar 

  12. Neben K, Jauch A, Hielscher T, Hillengass J, Lehners N, Seckinger A, et al. Progression in smoldering myeloma is independently determined by the chromosomal abnormalities del(17p), t(4;14), gain 1q, hyperdiploidy, and tumor load. J Clin Oncol. 2013;31:4325–32.

    PubMed  Google Scholar 

  13. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194:23–28.

    CAS  PubMed  Google Scholar 

  14. Tian JY, Hu WX, Tian EM, Shi YW, Shen QX, Tang LJ, et al. Cloning and sequence analysis of tumor-associated gene hMMTAG2 from human multiple myeloma cell line ARH-77. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 2003;35:143–8.

    CAS  Google Scholar 

  15. Melton PE, Johnson MP, Gokhale-Agashe D, Rea AJ, Ariff A, Cadby G, et al. Whole-exome sequencing in multiplex preeclampsia families identifies novel candidate susceptibility genes. J Hypertens. 2019;37:997–101.

    CAS  PubMed  Google Scholar 

  16. Bretones G, Delgado MD, Leon J. Myc and cell cycle control. Biochim Biophys Acta. 2015;1849:506–16.

    CAS  PubMed  Google Scholar 

  17. Pelengaris S, Khan M, Evan G. c-MYC: more than just a matter of life and death. Nat Rev Cancer. 2002;2:764–76.

    CAS  PubMed  Google Scholar 

  18. Holien T, Vatsveen TK, Hella H, Waage A, Sundan A. Addiction to c-MYC in multiple myeloma. Blood. 2012;120:2450–3.

    CAS  PubMed  Google Scholar 

  19. Kuehl WM, Bergsagel PL. MYC addiction: a potential therapeutic target in MM. Blood. 2012;120:2351–2.

    CAS  PubMed  Google Scholar 

  20. Agnelli L, Mosca L, Fabris S, Lionetti M, Andronache A, Kwee I, et al. A SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: an integrated genomics approach reveals a wide gene dosage effect. Genes Chromosom Cancer. 2009;48:603–14.

    CAS  PubMed  Google Scholar 

  21. Chng WJ, Kumar S, Vanwier S, Ahmann G, Price-Troska T, Henderson K, et al. Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling. Cancer Res. 2007;67:2982–9.

    CAS  PubMed  Google Scholar 

  22. Sobell HM. Actinomycin and DNA transcription. Proc Natl Acad Sci USA. 1985;82:5328–31.

    CAS  PubMed  Google Scholar 

  23. Mathur V, Verma A, Maiti S, Chowdhury S. Thermodynamics of i-tetraplex formation in the nuclease hypersensitive element of human c-myc promoter. Biochem Biophys Res Commun. 2004;320:1220–7.

    CAS  PubMed  Google Scholar 

  24. Shi Y, Frost PJ, Hoang BQ, Benavides A, Sharma S, Gera JF, et al. IL-6-induced stimulation of c-myc translation in multiple myeloma cells is mediated by myc internal ribosome entry site function and the RNA-binding protein, hnRNP A1. Cancer Res. 2008;68:10215–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pawlyn C, Morgan GJ. Evolutionary biology of high-risk multiple myeloma. Nat Rev Cancer. 2017;17:543–56.

    CAS  PubMed  Google Scholar 

  26. Kumar SK, Rajkumar V, Kyle RA, van Duin M, Sonneveld P, Mateos MV, et al. Multiple myeloma. Nat Rev Dis Prim. 2017;3:17046.

    PubMed  Google Scholar 

  27. Morgan GJ, Walker BA, Davies FE. The genetic architecture of multiple myeloma. Nat Rev Cancer. 2012;12:335–48.

    CAS  PubMed  Google Scholar 

  28. Jovanovic KK, Roche-Lestienne C, Ghobrial IM, Facon T, Quesnel B, Manier S. Targeting MYC in multiple myeloma. Leukemia. 2018;32:1295–306.

    CAS  PubMed  Google Scholar 

  29. Sabo A, Kress TR, Pelizzola M, de Pretis S, Gorski MM, Tesi A, et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature. 2014;511:488–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. MYC, metabolism, and cancer. Cancer Disco. 2015;5:1024–39.

    CAS  Google Scholar 

  31. Wiegering A, Uthe FW, Jamieson T, Ruoss Y, Huttenrauch M, Kuspert M, et al. Targeting translation initiation bypasses signaling crosstalk mechanisms that maintain high MYC levels in colorectal cancer. Cancer Disco. 2015;5:768–81.

    CAS  Google Scholar 

  32. Chng WJ, Huang GF, Chung TH, Ng SB, Gonzalez-Paz N, Troska-Price T, et al. Clinical and biological implications of MYC activation: a common difference between MGUS and newly diagnosed multiple myeloma. Leukemia. 2011;25:1026–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Shaffer AL, Emre NC, Lamy L, Ngo VN, Wright G, Xiao W, et al. IRF4 addiction in multiple myeloma. Nature. 2008;454:226–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chesi M, Robbiani DF, Sebag M, Chng WJ, Affer M, Tiedemann R, et al. AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. Cancer Cell. 2008;13:167–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M, et al. Non-transcriptional control of DNA replication by c-Myc. Nature. 2007;448:445–51.

    CAS  PubMed  Google Scholar 

  36. Arabi A, Wu S, Ridderstrale K, Bierhoff H, Shiue C, Fatyol K, et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol. 2005;7:303–10.

    CAS  PubMed  Google Scholar 

  37. Mateyak MK, Obaya AJ, Sedivy JM. c-Myc regulates cyclin D-Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points. Mol Cell Biol. 1999;19:4672–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shou Y, Martelli ML, Gabrea A, Qi Y, Brents LA, Roschke A, et al. Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma. Proc Natl Acad Sci USA. 2000;97:228–33.

    CAS  PubMed  Google Scholar 

  39. Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. MYC, Metabolism, and Cancer. Cancer Discov 2015;5: 1024–1039.

  40. Snead NM, Wu X, Li A, Cui Q, Sakurai K, Burnett JC, et al. Molecular basis for improved gene silencing by Dicer substrate interfering RNA compared with other siRNA variants. Nucleic Acids Res. 2013;41:6209–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gonzalez V, Hurley LH. The c-MYC NHE III(1): function and regulation. Annu Rev Pharm Toxicol. 2010;50:111–29.

    CAS  Google Scholar 

  42. Armas P, Nasif S, Calcaterra NB. Cellular nucleic acid binding protein binds G-rich single-stranded nucleic acids and may function as a nucleic acid chaperone. J Cell Biochem. 2008;103:1013–36.

    CAS  PubMed  Google Scholar 

  43. Duncan R, Bazar L, Michelotti G, Tomonaga T, Krutzsch H, Avigan M, et al. A sequence-specific, single-strand binding protein activates the far upstream element of c-myc and defines a new DNA-binding motif. Genes Dev. 1994;8:465–80.

    CAS  PubMed  Google Scholar 

  44. Eddy J, Maizels N. Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res. 2006;34:3887–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Geltinger C, Hortnagel K, Polack A. TATA box and Sp1 sites mediate the activation of c-myc promoter P1 by immunoglobulin kappa enhancers. Gene Expr. 1996;6:113–27.

    CAS  PubMed  Google Scholar 

  46. Grand CL, Han H, Munoz RM, Weitman S, Von Hoff DD, Hurley LH, et al. The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo. Mol Cancer Ther. 2002;1:565–73.

    CAS  PubMed  Google Scholar 

  47. Majello B, De Luca P, Suske G, Lania L. Differential transcriptional regulation of c-myc promoter through the same DNA binding sites targeted by Sp1-like proteins. Oncogene. 1995;10:1841–8.

    CAS  PubMed  Google Scholar 

  48. Postel EH, Berberich SJ, Flint SJ, Ferrone CA. Human c-myc transcription factor PuF identified as nm23-H2 nucleoside diphosphate kinase, a candidate suppressor of tumor metastasis. Science. 1993;261:478–80.

    CAS  PubMed  Google Scholar 

  49. Zeraati M, Langley DB, Schofield P, Moye AL, Rouet R, Hughes WE, et al. I-motif DNA structures are formed in the nuclei of human cells. Nat Chem. 2018;10:631–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported with grants from the National Natural Science Foundation of China (Nos. 81372538, 81400819, 81071947, 39880021 and 30770906).

Author information

Authors and Affiliations

Authors

Contributions

JH and WXH conceived and wrote the manuscript. SQL, DHX, JL, JMZ, XFB, JH, and WXH designed and performed the experiments. GL and YW performed bioinformatic analysis. SQL, JH, and WXH evaluated and analyzed the results.

Corresponding authors

Correspondence to Wei-Xin Hu or Jingping Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, SQ., Xiong, DH., Li, J. et al. C1orf35 contributes to tumorigenesis by activating c-MYC transcription in multiple myeloma. Oncogene 39, 3354–3366 (2020). https://doi.org/10.1038/s41388-020-1222-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1222-7

This article is cited by

Search

Quick links