Skip to main content

Advertisement

Log in

Spectroscopic, Optical and Dielectric Investigation of (Mg, Cu, Ni, or Cd) Acetates’ Influence on Carboxymethyl Cellulose Sodium Salt/Polyvinylpyrrolidone Polymer Electrolyte Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Solid polymer electrolytes, which have a low bandgap and a high dielectric constant, are an interesting technology for optoelectronic applications and supercapacitors. This work studies the influence of Mg, Cu, Ni or Cd acetates on the structural and optical properties and the dielectric relaxation phenomena in carboxymethyl cellulose sodium salt (CMC)/polyvinylpyrrolidone (PVP) blends. The dielectric behavior, ac conductivity and electrical modulus formalism were investigated in a frequency range of up to 1 MHz at room temperature. X-ray diffraction energy dispersive x-ray, Fourier transform infrared spectroscopy and scanning electron microscopy, revealed modifications of the films’ structural and chemical compositions and their morphology. UV–Vis and dielectric properties measurements revealed that the Cu and Mg salts had more distinctive influences on the optical properties, ac conductivity (\( \sigma_{\rm{ac}} ) \) and relaxation behavior. Cu and Mg reduced the optical bandgap Eg of the CMC/PVP blends from 5.1 eV to 4.7 eV and 3.6 eV, respectively, but increased \( \sigma_{\rm{ac}} \) from 8.61 × 10−5 S/cm to 1.34 × 10−4 S/cm and 1.81 ×10−4 S/cm, respectively. The dielectric measurements revealed an increase in the dielectric constant and dielectric losses for the composite films, which reflect the enhancement of the dielectric polarization of the films. The electric modulus spectra, calculated relaxation time and Argand plots confirmed an improvement in the ionic conductivity of the composite films. These results indicate that the incorporation of the acetate salts is a simple approach to widening the technological importance of CMC/PVP blend films for some optoelectronic devices and Cu and Mg battery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Amiri and M. Mohsennia, J. Mater. Sci.: Mater. Electron. 28, 4586–4592 (2017).

    CAS  Google Scholar 

  2. M. Ramaswamy, T. Malayandi, S. Subramanian, J. Srinivasalu, and M. Rangaswamy, Ionics 23, 1771–1781 (2017).

    CAS  Google Scholar 

  3. S.B. Aziz, T.J. Woo, M. Kadir, and H.M. Ahmed, J. Sci. Adv. Mater. Device 3, 1–17 (2018).

    Google Scholar 

  4. C. He, J. Liu, J. Cui, J. Li, and X. Wu, Solid State Ionics 315, 102–110 (2018).

    CAS  Google Scholar 

  5. O.G. Abdullah, S.B. Aziz, and M.A. Rasheed, Ionics 24, 777–785 (2018).

    CAS  Google Scholar 

  6. T. Yao, F.S. Genier, S. Biria, and I.D. Hosein, Res. Phys. 10, 529–531 (2018).

    Google Scholar 

  7. N.S. Sabran, I.A. Fadzallh, T. Ono, S.M. Said, and M.F.M. Sabri, J. Electron. Mater. 48, 5003–5011 (2019).

    CAS  Google Scholar 

  8. P. Singh, D.C. Bharati, P. Gupta, and A. Saroj, J. Non-Cryst. Solids 494, 21–30 (2018).

    CAS  Google Scholar 

  9. F. Franchello, L.C.W. de Menezes, W. Renzi, E. Laureto, D.A. Turchetti, L.C. Akcelrud, J.F. de Deus, and J.L. Duarte, J. Electron. Mater. 48, 5980–5987 (2019).

    CAS  Google Scholar 

  10. K. Deshmukh, M.B. Ahamed, A.R. Polu, K.K. Sadasivuni, S.K. Pasha, D. Ponnamma, M.A.-A. AlMaadeed, R.R. Deshmukh, and K. Chidambaram, J. Mater. Sci.: Mater. Electron. 27, 11410–11424 (2016).

    CAS  Google Scholar 

  11. H. Ragab, Phys. B 406, 3759–3767 (2011).

    CAS  Google Scholar 

  12. S.B. Aziz, M.A. Rasheed, A.M. Hussein, and H.M. Ahmed, Mater. Sci. Semicond. Process. 71, 197–203 (2017).

    CAS  Google Scholar 

  13. N. Rajeswari, S. Selvasekarapandian, C. Sanjeeviraja, J. Kawamura, and S.A. Bahadur, Polym. Bull. 71, 1061–1080 (2014).

    CAS  Google Scholar 

  14. H. Koduru, L. Marino, F. Scarpelli, A. Petrov, Y. Marinov, G. Hadjichristov, M. Iliev, and N. Scaramuzza, Curr. Appl. Phys. 17, 1518–1531 (2017).

    Google Scholar 

  15. S.S. Basha, G.S. Sundari, K.V. Kumar, and M. Rao, J. Inorg. Organomet. Polym. Mater. 27, 455–466 (2017).

    CAS  Google Scholar 

  16. R. Manjuladevi, S. Selvasekarapandian, M. Thamilselvan, R. Mangalam, S. Monisha, and P.C. Selvin, Ionics 24, 3493–3506 (2018).

    CAS  Google Scholar 

  17. M. Hafiza and M. Isa, Res. J. Recent Sci. 3, 50–56 (2014).

    CAS  Google Scholar 

  18. M. Ramlli and M. Isa, J. Phys. Chem. B 120, 11567–11573 (2016).

    CAS  Google Scholar 

  19. P. Ukakimaparn, D. Chantarawong, P. Songkeaw, K. Onlaor, T. Thiwawong, and B. Tunhoo, J. Electron. Mater. 48, 6792–6796 (2019).

    CAS  Google Scholar 

  20. W.J. Zheng, J. Gao, Z. Wei, J. Zhou, and Y.M. Chen, Eur. Polym. J. 72, 514–522 (2015).

    CAS  Google Scholar 

  21. N. Saha, R. Shah, P. Gupta, B.B. Mandal, R. Alexandrova, M.D. Sikiric, and P. Sáha, Mater. Sci. Eng. C 95, 440–449 (2019).

    CAS  Google Scholar 

  22. R. Shah, N. Saha, Z. Kuceková, P. Humpolicek, and P. Saha, Int. J. Polym. Mater. Polym. Biomat. 65, 619–628 (2016).

    CAS  Google Scholar 

  23. K.H. Al-Attiyah, A. Hashim, and S.F. Obaid, J. Bionanosci. 12, 200–205 (2018).

    CAS  Google Scholar 

  24. M. El-Bana, G. Mohammed, A.M. El Sayed, and S. El-Gamal, Polym. Compos. 39, 3712–3725 (2018).

    CAS  Google Scholar 

  25. M. Morsi, A. Rajeh, and A. Menazea, J. Mater. Sci.: Mater. Electron. 30, 2693–2705 (2019).

    CAS  Google Scholar 

  26. N. Roy, N. Saha, T. Kitano, and P. Saha, Carbohydr. Polym. 89, 346–353 (2012).

    CAS  Google Scholar 

  27. N. Roy, N. Saha, T. Kitano, and P. Saha, J. Appl. Polym. Sci. 117, 1703–1710 (2010).

    CAS  Google Scholar 

  28. S.B. Aziz, O.G. Abdulla, and S.A. Hussein, J. Electron. Mater. 47, 3800–3808 (2018).

    CAS  Google Scholar 

  29. S.A. Rag, M. Selvakumar, S. Bhat, S. Chidangil, and S. De, J. Electron. Mater. 49, 985–994 (2020).

    Article  Google Scholar 

  30. H.T.T. Thanh, P.A. Le, M.D. Thi, T.L. Quang, and T.N. Trinh, Bull. Mater. Sci. 41, 145 (2018).

    Google Scholar 

  31. A. Jamieson and I.C. McNeill, J. Polym. Sci. A Polym. Chem. Ed. 16, 2225–2235 (1978).

    CAS  Google Scholar 

  32. G. Mohammed and A.M. El Sayed, Polym. Adv. Technol. 30, 698–712 (2019).

    CAS  Google Scholar 

  33. A. Shehap, Egypt. J. Solids 31, 75–91 (2008).

    Google Scholar 

  34. S.A. Mohamed, A. Al-Ghamdi, G. Sharma, and M. El Mansy, J. Adv. Res. 5, 79–86 (2014).

    CAS  Google Scholar 

  35. S.B. Aziz and Z.H.Z. Abidin, Mater. Chem. Phys. 144, 280–286 (2014).

    CAS  Google Scholar 

  36. S.B. Aziz, J. Inorg. Organomet. Polym. Mater. 28, 1942–1952 (2018).

    CAS  Google Scholar 

  37. H. Khmissi, A.M. El Sayed, and M. Shaban, J. Mater. Sci. 51, 5924–5938 (2016).

    CAS  Google Scholar 

  38. E.M. Abdelrazek, A.M. Abdelghany, S.I. Badr, and M.A. Morsi, J. Mater. Res. Technol. 7, 419–431 (2018).

    CAS  Google Scholar 

  39. A. Ashery, G. Khabiri, A. Hassan, M.M.K. Yousef, and A.S.G. Khalil, Mater. Sci. Semicond. Process. 104, 104652 (2019).

    Google Scholar 

  40. N.S. Alghunaim, Res. Phys. 6, 456–460 (2016).

    Google Scholar 

  41. O.A. Bin-Dahman, M. Rahaman, D. Khastgir, and M.A. Al-Harthi, Can. J. Chem. Eng. 96, 903–911 (2018).

    CAS  Google Scholar 

  42. A. Thomas, K. Abraham, J. Thomas, and K. Saban, J. Asian Ceram. Soc. 5, 56–61 (2017).

    Google Scholar 

  43. K. Singh and P. Gupta, Eur. Polym. J. 34, 1023–1029 (1998).

    CAS  Google Scholar 

  44. S. Bhattacharrya, S. Saha, and D. Chakravorty, Appl. Phys. Lett. 76, 3896–3898 (2000).

    CAS  Google Scholar 

  45. A.S. Roy, S. Gupta, S. Sindhu, A. Parveen, and P.C. Ramamurthy, Compos. B Eng. 47, 314–319 (2013).

    CAS  Google Scholar 

  46. M. Morsi, A. Rajeh, and A. Al-Muntaser, Compos. B Eng. 173, 106957 (2019).

    CAS  Google Scholar 

  47. I. Yahia, N. Hegab, A. Shakra, and A. Al-Ribaty, Phys. B 407, 2476–2485 (2012).

    CAS  Google Scholar 

  48. S. Choudhary and R.J. Sengwa, J. Appl. Polym. Sci. 134, 44568 (2017).

    Google Scholar 

  49. S. Choudhary, A. Bald, R.J. Sengwa, D. Chęcińska-Majak, and K. Klimaszewski, J. Appl. Polym. Sci. 132, 42188 (2015).

    Google Scholar 

  50. P. Dhatarwal and R. Sengwa, J. Polym. Res. 26, 196 (2019).

    Google Scholar 

  51. A.S. Das and D. Biswas, Mater. Res. Exp. 6, 075206 (2019).

    CAS  Google Scholar 

  52. S. Sinha, S.K. Chatterjee, J. Ghosh, and A.K. Meikap, J. Phys. D Appl. Phys. 47, 275301 (2014).

    Google Scholar 

  53. A. Rajeh, M. Morsi, and I. Elashmawi, Vacuum 159, 430–440 (2019).

    CAS  Google Scholar 

  54. N. Gondaliya, D. Kanchan, P. Sharma, and P. Joge, J. Appl. Polym. Sci. 125, 1513–1520 (2012).

    CAS  Google Scholar 

  55. S. Nath, S.K. Barik, S. Hajra, and R. Choudhary, Phys. B 567, 100–108 (2019).

    CAS  Google Scholar 

  56. M. Dult, R. Kundu, J. Hooda, S. Murugavel, R. Punia, N. Kishore, and J. Non-Crystall, Solids 423, 1–8 (2015).

    Google Scholar 

  57. S. Thakur, R. Rai, I. Bdikin, and M.A. Valente, Mater. Res. 19, 1–8 (2016).

    CAS  Google Scholar 

  58. N.S. Alghunaim, Res. Phys. 9, 1136–1140 (2018).

    Google Scholar 

  59. S. Ramesh and M. Chai, Mater. Sci. Eng. B 139, 240–245 (2007).

    CAS  Google Scholar 

  60. S. Panteny, R. Stevens, and C. Bowen, Ferroelectrics 319, 199–208 (2005).

    Google Scholar 

  61. R.K. Mishra, P. Mishra, K. Verma, and K. Joseph, Vacuum 157, 433–441 (2018).

    CAS  Google Scholar 

  62. G. Mohammed, A.M. El Sayed, and S. El-Gamal, J. Inorg. Organomet. Polym. Mater. (2019). https://doi.org/10.1007/s10904-019-01307-9.

    Article  Google Scholar 

  63. S. Sinha, S.K. Chatterjee, J. Ghosh, and A.K. Meikap, Polym. Compos. 38, 287–298 (2017).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gomaa Khabiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Sayed, A.M., Khabiri, G. Spectroscopic, Optical and Dielectric Investigation of (Mg, Cu, Ni, or Cd) Acetates’ Influence on Carboxymethyl Cellulose Sodium Salt/Polyvinylpyrrolidone Polymer Electrolyte Films. J. Electron. Mater. 49, 2381–2392 (2020). https://doi.org/10.1007/s11664-020-07953-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-07953-x

Keywords

Navigation