Skip to main content

Advertisement

Log in

Assessing of Photoluminescence and Thermoluminescence Properties of Dy3+ Doped White Light Emitter TTB-Lead Metatantalate Phosphor

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Trivalent Dy doped TTB (tetragonal tungsten bronze) lead tantalate (PbTa2O6) phosphors were synthesized by the solid-state reaction route. Structural and spectroscopic properties have been carried out by x-ray diffraction (XRD), scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS), photoluminescence (PL) and thermoluminescence (TL) analyses. XRD patterns of samples revealed the presence of TTB symmetry which continued up to 10 mol.%. SEM analysis showed the transformation of grain morphology from the shapeless-rounded to elongate. Strong PL emissions of PbTa2O6:Dy3+ phosphor were monitored at 480.5 nm and 578.5 nm. PL emission increased up to 7 mol.% and then decreased because of the concentration quenching. Decay times decreased with the increase of concentration and the end of the process (10 mol.%) fell to 355 μm. The energy transfer efficiency (ηET) energy transfer rate (W) and quantum efficiency (ηQE) of the whole process were found as 56.25%, 1.581 ms–1, and 20.27%, respectively. The CIE (Commission Internationale de l’Éclairage) coordinates of all phosphors have located close to the standard white light center, also the CIE coordinates (x, y) and CCT (correlated color temperature) value for 7 mol.% phosphor were found as (0.310, 0.295) and 6238 K, respectively. TL emissions of PbTa2O6:Dy3+ phosphor were monitored by four glow peaks in the range between 50°C and 400°C after x-ray irradiation. TL kinetic parameters were determined by the deconvolution of the 5 mol.% sample which has the highest glow curve intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.H. Butt, M.S. Rafique, S. Bashir, K. Mehmood, and A. Mahmood, Ceram. Int. 45, 5648–5652 (2019).

    Article  CAS  Google Scholar 

  2. Z. Daoyun, L. Min, M. Zhongfei, and W. Fugen, J. Electron. Mater. 47, 4840–4844 (2018).

    Article  Google Scholar 

  3. S.P. Sonika, A. Khatkar, R.Kumar Khatkar, and V.B. Taxak, J. Electron. Mater. 44, 542–548 (2015).

    Article  CAS  Google Scholar 

  4. N. Bajpai, S.A. Khan, R.S. Kher, N. Bramhe, S.J. Dhoble, and A. Tiwari, J. Lumin. 145, 940–943 (2014).

    Article  CAS  Google Scholar 

  5. İ.Ç. Keskin, M. Türemiş, Mİ. Katı, R. Kibar, and A. Çetin, Radiat. Phys. Chem. 151, 137–143 (2019).

    Article  Google Scholar 

  6. V. Dubey, J. Kaur, and S. Agrawal, Mater. Sci. Semicond. Proc. 31, 27–37 (2015).

    Article  CAS  Google Scholar 

  7. G. Zhu, Z. Ci, S. Xin, Y. Wen, and Y. Wang, Mater. Lett. 91, 304–306 (2013).

    Article  CAS  Google Scholar 

  8. M. Albino, P. Veber, E. Castel, M. Velázquez, K. Schenk, G. Chapuis, M. Lahaye, S. Pechev, M. Maglione, and M. Josse, Eur. J. Inorg. Chem. 2013, 2817–2825 (2013).

    Article  CAS  Google Scholar 

  9. M.H. Franoombe and B. Lewis, Acta Cryst. 11, 696–703 (1958).

    Article  Google Scholar 

  10. E.C. Subbarao, G. Shirane, and F. Jona, Acta Cryst. 13, 226–231 (1964).

    Article  Google Scholar 

  11. M. İlhan, Int. J. Appl. Ceram. Technol. 14, 1144–1150 (2017).

    Article  Google Scholar 

  12. G. Burns, E.A. Giess, D.F. O’Kane, B.A. Scott, and A.W. Smith, J. Phys. Soc. Jpn. 28, 153–157 (1970).

    Google Scholar 

  13. Y. Xu, Ferroelectric Materials and Their Application (Amsterdam: North Holland, 1991), pp. 247–249.

    Book  Google Scholar 

  14. A. Magneli, Arkiv Kemi 1, 213–221 (1949).

    CAS  Google Scholar 

  15. A. Simon and J. Ravez, C. R. Chim. 9, 1268–1276 (2006).

    Article  CAS  Google Scholar 

  16. G. Zhu, Z. Ci, C. Ma, Y. Shi, and Y. Wang, Mater. Res. Bull. 48, 1995–1998 (2013).

    Article  CAS  Google Scholar 

  17. C. Shivakumara, R. Saraf, and P. Halappa, Dyes Pigments 126, 154–164 (2016).

    Article  CAS  Google Scholar 

  18. L. Macalik, M. Maczka, J. Hanuza, A. Bednarkiewicz, D. Hreniak, W. Strek, and A. Majchrowski, J. Alloys Compd. 380, 248–254 (2004).

    Article  CAS  Google Scholar 

  19. X. Joseph, R. George, S. Thomas, M. Gopinath, M.S. Sajna, and N.V. Unnikrishnan, Opt. Mater. 37, 552–560 (2014).

    Article  CAS  Google Scholar 

  20. G. Blasse, J. Solid State Chem. 62, 207–211 (1986).

    Article  CAS  Google Scholar 

  21. G. Blasse, Philips Res. Rep. 24, 131 (1969).

    CAS  Google Scholar 

  22. H. He, J. Li, X. Lai, P. Li, Y. Xiao, P. Zhang, and W. Zhang, Opt. Mater. 84, 52–58 (2018).

    Article  CAS  Google Scholar 

  23. L. Marciniak, D. Hreniakand, and W. Strek, J. Mater. Chem. C 2, 5704–5708 (2014).

    Article  CAS  Google Scholar 

  24. S. Chemingui, M. Ferhi, K.H. Naiferand, and M. Férid, J. Lumin. 166, 82–87 (2015).

    Article  CAS  Google Scholar 

  25. M. Du, F. Tang, J. Long, C. Ma, X. Yuan, J. Zhang, Z. Wen, R. Ma, and Y. Cao, Mater. Res. Bull. 483, 316–323 (2013).

    Google Scholar 

  26. W. Li, M. Yang, F. Kang, and G. Sun, Mater. Chem. Phys. 207, 396–401 (2018).

    Article  CAS  Google Scholar 

  27. A.G. Bispo-Jr, S.A.M. Lima, S. Lanfredi, F.R. Praxedes, and A.M. Pires, J. Lumin. 214, 116604 (2019).

    Article  CAS  Google Scholar 

  28. R. Liu, Y. Yan, and C. Ma, Front. Chem. 6, 1–9 (2018).

    Article  Google Scholar 

  29. H. Yin, Y. Li, J. Bai, M. Ma, and J. Liu, J. Materiomics (2016). https://doi.org/10.1016/j.jmat.2016.11.004.

    Article  Google Scholar 

  30. C.S. McCamy, Color Res. Appl. 17, 142–144 (1992).

    Article  Google Scholar 

  31. P. Dewangan, D.P. Bisen, N. Brahme, and S. Sharma, J. Alloys Compd. 777, 423–433 (2019).

    Article  CAS  Google Scholar 

  32. S. Kumar, A.K. Gathania, A. Vij, and R. Kumar, Ceram. Int. 42, 14511–14517 (2016).

    Article  CAS  Google Scholar 

  33. S. Gültekin, S. Yıldırım, O. Yılmaz, İ.Ç. Keskin, Mİ. Katı, and E. Çelik, J. Lumin. 206, 59–69 (2019).

    Article  Google Scholar 

  34. K.K. Gupta, R.M. Kadam, N.S. Dhoble, S.P. Lochab, V. Singh, and S.J. Dhoble, J. Alloys Compd. 688, 982–993 (2016).

    Article  CAS  Google Scholar 

  35. Y. Horowitz, Radiat. Prot. Dosim. 30, 75–76 (1990).

    Article  Google Scholar 

  36. C. Pagonis, V. Kitis, and G. Furetta, Numerical and Practical Exercises in Thermoluminescence (New York: Springer, 2006).

    Google Scholar 

  37. T. Sakurai and R.K. Gartia, J. Phys. D Appl. Phys. 36, 2719–2724 (2003).

    Article  CAS  Google Scholar 

  38. H.G. Balian and N.W. Eddy, Nucl. Instrum. Methods 145, 389–395 (1977).

    Article  CAS  Google Scholar 

  39. S.K. Misra and N.W. Eddy, Nucl. Instrum. Methods 166, 537–540 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa İlhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İlhan, M., Keskin, İ.Ç. & Gültekin, S. Assessing of Photoluminescence and Thermoluminescence Properties of Dy3+ Doped White Light Emitter TTB-Lead Metatantalate Phosphor. J. Electron. Mater. 49, 2436–2449 (2020). https://doi.org/10.1007/s11664-020-07939-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-07939-9

Keywords

Navigation