Skip to main content
Log in

A Temperature Sensor Based on Al/p-Si/CuCdO2/Al Diode for Low Temperature Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

CuCdO2 delafossite oxide film as an interface layer was coated by sol–gel spin coating on p-Si substrate, and thus an Al/p-Si/CuCdO2/Al diode was fabricated. Scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) was used to obtain an image of the CuCdO2 oxide film. The temperature-dependent behavior of the diode was studied by current–voltage (IV) and capacitance/conductance–voltage (C/GV) measurements over the 100–400 K temperature range. It is observed that the ideality factor (n) decreases and zero-bias barrier height (Φb0) increases with an increase in temperature. This abnormal behavior of n and Φb0 is attributed to barrier inhomogeneities by assuming Gaussian distribution (GD) at the metal–semiconductor interface. For each temperature, the barrier height values obtained from both the conventional IV and Norde method show good agreement with each other. The IVT characteristics have shown the GD, giving a mean barrier height (\( {\bar{\Phi }}_{b0} \)) of 1.04 eV and a standard deviation (σs) of 0.12 V. A modified Richardson plot of [ln(I0/T2) − q2σ 2s /2k2T2 versus q/kT] yields \( {\bar{\Phi }}_{b0} \) and A* as 1.06 eV and 31.21 A cm−2 K−2 (indicating an agreement with the theoretical value of 32 A cm−2 K−2), showing the promise of CuCdO2/Si as temperature sensing with a Schottky junction. In addition, CV and GV measurements show that the C value decreases and the G value increases as the frequency increases, depending on a continuous distribution of interface states. Also, the capacitance and the conductance values decrease with increasing temperature. The results suggest that Al/p-Si/CuCdO2/Al diode can be used for temperature sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Trani, J. Vidal, S. Botti, and M.A.L. Marques, Phys. Rev. B 82, 085115 (2010).

    Article  Google Scholar 

  2. E. Guilmeau, A. Maignan, and C. Martin, J. Electron. Mater. 38, 1104 (2009).

    Article  CAS  Google Scholar 

  3. K.G. Godinho, B.J. Morgan, J.P. Allen, D.O. Scanlon, and G.W. Watson, J. Phys. Condens. Matter 23, 334201 (2011).

    Article  CAS  Google Scholar 

  4. M. Yu, T.I. Draskovic, and Y. Wu, Phys. Chem. Chem. Phys. 16, 5026 (2014).

    Article  CAS  Google Scholar 

  5. C. Ruttanapun, J. Appl. Phys. 114, 113108 (2013).

    Article  Google Scholar 

  6. M. Snure and A. Tiwaria, Appl. Phys. Lett. 91, 092123 (2007).

    Article  Google Scholar 

  7. A. Stadler, Materials 5, 661 (2012).

    Article  Google Scholar 

  8. M. Mansoor, I. Haneef, S. Akhtar, A. De Luca, and F. Udrea, Sens. Actuators A 232, 63 (2015).

    Article  CAS  Google Scholar 

  9. S. Santra, P.K. Guha, S.Z. Ali, I. Haneef, and F. Udrea, IEEE Sens. J. 10, 997 (2010).

    Article  CAS  Google Scholar 

  10. A. De Luca, V. Pathirana, S.Z. Ali, D. Dragomirescu, and F. Udrea, Sens. Actuators A 222, 31 (2015).

    Article  Google Scholar 

  11. E.H. Rhoderick and R.H. Williams, Metal-Semiconductor Contacts, 2nd ed. (Oxford: Clarendon Press, 1988).

    Google Scholar 

  12. S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed. (Chichester: Wiley, 2007).

    Google Scholar 

  13. B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications (New York: Plenum, 1984).

    Book  Google Scholar 

  14. R.T. Tung, Phys. Rev. B 45, 13509 (1992).

    Article  CAS  Google Scholar 

  15. J.H. Werner and H.H. Guttler, J. Appl. Phys. 69, 1522 (1991).

    Article  CAS  Google Scholar 

  16. R.O. Ocaya, A. Al-Ghamdi, F. El-Tantawy, W.A. Farooq, and F. Yakuphanoglu, J. Alloys Compd. 674, 277 (2016).

    Article  CAS  Google Scholar 

  17. I. Jyothi, H.-D. Yang, K.-H. Shim, V. Janardhanam, S.-M. Kang, H. Hong, and C.-J. Choi, Mater. Trans. 54, 1655 (2013).

    Article  CAS  Google Scholar 

  18. M. Soylu and H.S. Kader, J. Electron. Mater. 45, 5756 (2016).

    Article  CAS  Google Scholar 

  19. V.S. Nirwal, K.R. Peta, V.R. Reddy, and M.D. Kim, J. Alloys Compd. 705, 782 (2017).

    Article  CAS  Google Scholar 

  20. Ş. Karataş, Ş. Altındal, A. Türüt, and M. Cakar, Phys. B 392, 43 (2007).

    Article  Google Scholar 

  21. B. Asha, C.S. Harsha, R. Padma, and V.R. Reddy, J. Electron. Mater. 47, 4140 (2018).

    Article  CAS  Google Scholar 

  22. Ç. Oruç and A. Altındal, Appl. Phys. A 124, 81 (2018).

    Article  Google Scholar 

  23. H. Norde, J. Appl. Phys. 50, 5052 (1979).

    Article  CAS  Google Scholar 

  24. M. Gedikpınar, M. Cavas, Z.A. Alahmed, and F. Yakuphanoglu, Superlatt. Microstr. 59, 123 (2013).

    Article  Google Scholar 

  25. A. Kumar, S. Arafin, M.C. Amann, and R. Singh, Nanoscale Res. Lett. 8, 481 (2013).

    Article  Google Scholar 

  26. S.S. Naik and V.R. Reddy, Adv. Mat. Lett. 3, 188 (2012).

    Article  CAS  Google Scholar 

  27. A. Tataroğlu and F.Z. Pür, Phys. Scr. 88, 015801 (2013).

    Article  Google Scholar 

  28. R.K. Gupta, K. Ghosh, and P.K. Kahol, Phys. E 41, 876 (2009).

    Article  CAS  Google Scholar 

  29. K. Moraki, S. Bengi, S. Zeyrek, M.M. Bülbül, and Ş. Altındal, J. Mater. Sci. 28, 3987 (2017).

    CAS  Google Scholar 

  30. A. Tataroğlu and S. Altındal, J. Alloys Compd. 479, 893 (2009).

    Article  Google Scholar 

  31. E.H. Nicollian and J.R. Brews, MOS Physics and Technology (New York: Wiley, 1982).

    Google Scholar 

  32. A. Buyukbas, A. Tataroglu, and M. Balbasi, J. Nanoelectron. Optoelectron. 10, 675 (2015).

    Article  CAS  Google Scholar 

  33. R. Padma, K. Sreenu, and V.R. Reddy, J. Alloys Compd. 695, 2587 (2017).

    Article  CAS  Google Scholar 

  34. B.A. Gozeh, A. Karabulut, A. Yildiz, and F. Yakuphanoglu, J. Alloys Compd. 732, 16 (2018).

    Article  CAS  Google Scholar 

  35. E. Kadri, M. Khlifi, M. Krichen, K. Khirouni, and A. Zouari, Opt. Quant. Electron. 49, 13 (2017).

    Article  Google Scholar 

  36. Z. Rebaoui, W.B. Bouiajra, M.A. Abid, A. Saidane, D. Jammel, M. Henini, and J.F. Felix, Microelectron. Eng. 171, 11 (2017).

    Article  CAS  Google Scholar 

  37. S. Hlali, A. Farji, N. Hizem, L. Militaru, A. Kalboussi, and A. Souifi, J. Alloys Compd. 713, 194 (2017).

    Article  CAS  Google Scholar 

  38. M.S.P. Reddy, P.T. Puneetha, Y.-W. Lee, S.-H. Jeong, and C. Park, Poly. Testing 59, 107 (2017).

    Article  CAS  Google Scholar 

  39. E.H. Nicollian and A. Goetzberger, Bell Syst. Tech. J. 46, 1055 (1967).

    Article  CAS  Google Scholar 

  40. S. Mahato and J. Puigdollers, Phys. B Phys. Condens. Matter 530, 327 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Scientific Project Unit of Fırat University under Project No.: MF.16.79. Also, this research was supported by the Research Center for Advanced Materials Science at King Khalid University through a Grant RCAMS/ KKU/007-18. Authors want to acknowledge them for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Soylu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dere, A., TataroŸğlu, A., Al-Sehemi, A.G. et al. A Temperature Sensor Based on Al/p-Si/CuCdO2/Al Diode for Low Temperature Applications. J. Electron. Mater. 49, 2317–2325 (2020). https://doi.org/10.1007/s11664-020-07989-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-07989-z

Keywords

Navigation