Skip to main content
Log in

ZIF-8/LiFePO4 derived Fe-N-P Co-doped carbon nanotube encapsulated Fe2P nanoparticles for efficient oxygen reduction and Zn-air batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Iron-based oxygen reduction reaction (ORR) catalysts have been the focus of research, and iron sources play an important role for the preparation of efficient ORR catalysts. Here, we successfully use LiFePO4 as ideal sources of Fe and P to construct the heteroatom doped Fe-based carbon materials. The obtained Fe-N-P co-doped coral-like carbon nanotube arrays encapsulated Fe2P catalyst (C-ZIF/LFP) shows very high half-wave potential of 0.88 V in alkaline electrolytes toward ORR, superior to Pt/C (0.85 V), and also presents a high half-wave potential of 0.74 V in acidic electrolytes, comparable to Pt/C (0.8 V). When further applied into a home-made Zn-air battery as cathode, a peak power density of 140 mW·cm2 is reached, exceeds commercial Pt/C (110 mW·cm2). Besides, it also presents exceptional durability and methanol resistance compared with Pt/C. Noticeably, the preparation method of such a high-performance catalyst is simple and easy to optimize, suitable for the large-scale production. What’s more, it opens up a more sustainable development scenario to reduce the hazardous wastes such as LiFePO4 by directly using them for preparing high-performance ORR catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, L. Z.; Fischer, J. M. T. A.; Jia, Y.; Yan, X. C.; Xu, W.; Wang, X. Y.; Chen, J.; Yang, D. J.; Liu, H. W.; Zhuang, L. Z. et al. Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J. Am. Chem. Soc. 2018, 140, 10757–10763.

    CAS  Google Scholar 

  2. Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science2019, 366, 850–856.

    CAS  Google Scholar 

  3. Liu, J.; Jiao, M. G.; Mei, B. B.; Tong, Y. X.; Li, Y. P.; Ruan, M. B.; Song, P.; Sun, G. Q.; Jiang, L. H.; Wang, Y. et al. Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction. Angew. Chem., Int. Ed.2019, 131, 1175–1179.

    Google Scholar 

  4. Tao, L.; Qiao, M.; Jin, R.; Li, Y.; Xiao, Z. H.; Wang, Y. Q.; Zhang, N. N.; Xie, C.; He, Q. G.; Jiang, D. C. et al. Bridging the surface charge and catalytic activity of a defective carbon electrocatalyst. Angew. Chem., Int. Ed.2019, 131, 1031–1036.

    Google Scholar 

  5. Tang, C.; Zhong, L.; Zhang, B. S.; Wang, H. F.; Zhang, Q. 3D mesoporous van der waals heterostructures for trifunctional energy electrocatalysis. Adv. Mater. 2018, 30, 1705110.

    Google Scholar 

  6. Li, Y. B.; Zhong, C.; Liu, J.; Zeng, X. Q.; Qu, S. X.; Han, X. P.; Deng, Y. D.; Hu, W. B.; Lu, J. Atomically thin mesoporous Co3O4 layers strongly coupled with N-rGO nanosheets as high-performance bifunctional catalysts for 1D knittable zinc-air batteries. Adv. Mater. 2018, 30, 1703657.

    Google Scholar 

  7. Cheng, H.; Li, M. L.; Su, C. Y.; Li, N.; Liu, Z. Q. Cu-Co bimetallic oxide quantum dot decorated nitrogen-doped carbon nanotubes: A high-efficiency bifunctional oxygen electrode for Zn-air batteries. Adv. Funct. Mater. 2017, 27, 1701833.

    Google Scholar 

  8. Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science2016, 351, 361–365.

    CAS  Google Scholar 

  9. Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science2009, 323, 760–764.

    CAS  Google Scholar 

  10. Xue, W. D.; Zhou, Q. X.; Li, F. X.; Ondon, B. S. Zeolitic imidazolate framework-8 (ZIF-8) as robust catalyst for oxygen reduction reaction in microbial fuel cells. J. Power Sources2019, 423, 9–17.

    CAS  Google Scholar 

  11. Wang, Q. C; Ji, Y. J.; Lei, Y. P.; Wang, Y B.; Wang, Y. D.; Li, Y. Y; Wang, S. Y. Pyridinic-N-dominated doped defective graphene as a superior oxygen electrocatalyst for ultrahigh-energy-density Zn-air batteries. ACS Energy Lett.2018, 3, 1183–1191.

    CAS  Google Scholar 

  12. Liu, X.; Liu, H.; Chen, C; Zou, L. L.; Li, Y; Zhang, Q.; Yang, B.; Zou, Z. Q.; Yang, H. Fe2N nanoparticles boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe-N-C porous catalyst. Nano Res.2019, 12, 1651–1657.

    CAS  Google Scholar 

  13. Han, Y H.; Wang, Y. G; Xu, R. R.; Chen, W. X.; Zheng, L. R.; Han, A. J.; Zhu, Y. Q.; Zhang, J.; Zhang, H. B.; Luo, J. et al. Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci.2018, 11, 2348–2352.

    CAS  Google Scholar 

  14. Kumar, K.; Gairola, P.; Lions, M.; Ranjbar-Sahraie, N.; Mermoux, M.; Dubau, L.; Zitolo, A.; Jaouen, F.; Maillard, F. Physical and chemical considerations for improving catalytic activity and stability of non-precious-metal oxygen reduction reaction catalysts. ACS Catal.2018, 8, 11264–11276.

    CAS  Google Scholar 

  15. Wei, W.; Shi, X. M.; Gao, P.; Wang, S. S.; Hu, W.; Zhao, X. X.; Ni, Y. M.; Xu, X. Y; Xu, Y. Q.; Yan, W. S. et al. Well-elaborated, mechanochemically synthesized Fe-TPPcZIF precursors (Fe-TPP = tetraphenylporphine iron) to atomically dispersed iron-nitrogen species for oxygen reduction reaction and Zn-air batteries. Nano Energy2018, 52, 29–37.

    CAS  Google Scholar 

  16. Galiote, N. A.; Oliveira, F. E. R.; Lima, F. H. B. FeCo-N-C oxygen reduction electrocatalysts: Activity of the different compounds produced during the synthesis via pyrolysis. Appl. Catal. B: Environ.2019, 253, 300–308.

    CAS  Google Scholar 

  17. Su, C. Y; Cheng, H; Li, W.; Liu, Z. Q.; Li, N; Hou, Z. F.; Bai, F. Q.; Zhang, H. X.; Ma, T. Y. Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv. Energy Mater.2017, 7, 1602420.

    Google Scholar 

  18. Huang, Z.; Pan, H. Y; Yang, W. J.; Zhou, H. H; Gao, N.; Fu, C. P.; Li, S. C; Li, H. X.; Kuang, Y. F. In situ self-template synthesis of Fe-N-doped double-shelled hollow carbon microspheres for oxygen reduction reaction. ACS Nano2018, 12, 208–216.

    CAS  Google Scholar 

  19. Jiao, L.; Wan, G; Zhang, R.; Zhou, H; Yu, S. H; Jiang, H. L. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media. Angew. Chem., Int. Ed.2018, 57, 8525–8529.

    CAS  Google Scholar 

  20. Wu, M. M.; Wang, K.; Yi, M.; Tong, Y. X.; Wang, Y; Song, S. Q. A facile activation strategy for an MOF-derived metal-free oxygen reduction reaction catalyst: Direct access to optimized pore structure and nitrogen species. ACS Catal.2017, 7, 6082–6088.

    CAS  Google Scholar 

  21. Shui, J. L.; Chen, C.; Grabstanowicz, L.; Zhao, D.; Liu, D. J. Highly efficient nonprecious metal catalyst prepared with metal-organic framework in a continuous carbon nanofibrous network. Proc. Natl. Accad. Sci. USA2015, 112, 10629–10634.

    CAS  Google Scholar 

  22. Jiao, L.; Wang, Y; Jiang, H. J.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater.2018, 30, 1703663.

    Google Scholar 

  23. Aiyappa, H. B.; Masa, J.; Andronescu, C.; Muhler, M.; Fischer, R. A.; Schuhmann, W. MOFs for electrocatalysis: From serendipity to design strategies. Small Methods2019, 3, 1800415.

    Google Scholar 

  24. Ma, L. T.; Chen, S. M.; Pei, Z. X.; Huang, Y; Liang, G. J.; Mo, F. N.; Yang, Q.; Su, J.; Gao, Y. H.; Zapien, J. A. et al. Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery. A CS Nano2018, 12, 1949–1958.

    CAS  Google Scholar 

  25. Pendashteh, A.; Vilela, S. M. F.; Krivtsov, I.; Ávila-Brande, D.; Palma, J.; Horcajada, P.; Marcilla, R. Bimetal zeolitic imidazolate framework (ZIF-9) derived nitrogen-doped porous carbon as efficient oxygen electrocatalysts for rechargeable Zn-air batteries. J. Power Sources2019, 427, 299–308.

    CAS  Google Scholar 

  26. Sun, X. P.; Sun, S. X.; Gu, S. Q.; Liang, Z. F; Zhang, J. X.; Yang, Y. Q.; Deng, Z.; Wei, P.; Peng, J.; Xu, Y. et al. High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures. Nano Energy2019, 61, 245–250.

    CAS  Google Scholar 

  27. Chong, L. N.; Wen, J. G; Kubal, J; Sen, F. G; Zou, J. X.; Greeley, J; Chan, M.; Barkholtz, H; Ding, W. J.; Liu, D. J. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science2018, 362, 1276–1281.

    CAS  Google Scholar 

  28. Wang, Z. H.; Jin, H. H.; Meng, T.; Liao, K.; Meng, W. Q.; Yang, J. L.; He, D. P.; Xiong, Y. L.; Mu, S. C. Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc-air batteries. Adv. Funct. Mater. 2018, 28, 1802596.

    Google Scholar 

  29. Sun, Z. C.; Zhu, M. S.; Lv, X. S.; Liu, Y. Y.; Shi, C.; Dai, Y.; Wang, A. J.; Majima, T. Insight into iron group transition metal phosphides (Fe2P, C o 2P, N i 2P) for improving photocatalytic hydrogen generation. Appl. Catal. B: Environ. 2019, 246, 330–336.

    CAS  Google Scholar 

  30. Fan, H. L.; Liu, H.; Hu, X.; Lv, G. Q.; Zheng, Y.; He, F.; Ma, D. L.; Liu, Q.; Lu, Y. Z.; Shen, W. Z. Fe2P@mesoporous carbon nanosheets synthesized via an organic template method as A cathode electrocatalyst for Zn-air batteries. J. Mater. Chem. A2019, 7, 11321–11330.

    CAS  Google Scholar 

  31. Zhou, B. L.; Yan, F.; Li, X. J.; Zhou, J.; Zhang, W. F. An interpenetrating porous organic polymer as a precursor for FeP/Fe2P-embedded porous carbon toward a pH-universal ORR catalyst. ChemSusChem2019, 12, 915–923.

    CAS  Google Scholar 

  32. Miao, Z. P.; Wang, X. M.; Tsai, M. C.; Jin, Q. Q.; Liang, J. S.; Ma, F.; Wang, T. Y.; Zheng, S. J.; Hwang, B. J.; Huang, Y. H. et al. Atomically dispersed Fe-Nx/C electrocatalyst boosts oxygen catalysis via a new metal-organic polymer supramolecule strategy. Adv. Energy Mater. 2018, 8, 1801226.

    Google Scholar 

  33. Wu, K. L.; Chen, X.; Liu, S. J.; Pan, Y.; Cheong, W. C.; Zhu, W.; Cao, X.; Shen, R. A.; Chen, W. X.; Luo, J. et al. Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res. 2018, 11, 6260-6269.

    CAS  Google Scholar 

  34. Chen, S.; Zhao, L. L.; Ma, J. Z.; Wang, Y. Q.; Dai, L. M.; Zhang, J. T. Edge-doping modulation of N, P-codoped porous carbon spheres for high-performance rechargeable Zn-air batteries. Nano Energy2019, 60, 536–544.

    CAS  Google Scholar 

  35. Zhang, L.; Xiong, J.; Qin, Y. H.; Wang, C. W. Porous N-C catalyst synthesized by pyrolyzing g-C3N4 embedded in carbon as highly efficient oxygen reduction electrocatalysts for primary Zn-air battery. Carbon2019, 150, 475–484.

    CAS  Google Scholar 

  36. Yang, D. S.; Song, M. Y.; Singh, K. P.; Yu, J. S. The role of iron in the preparation and oxygen reduction reaction activity of nitrogen-doped carbon. Chem. Commun. 2015, 51, 2450–2453.

    CAS  Google Scholar 

  37. Pu, Z. H.; Zhao, J. H.; Amiinu, I. S.; Li, W. Q.; Wang, M.; He, D. P.; Mu, S. C. A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction. Energy Environ. Sci. 2019, 12, 952–957.

    CAS  Google Scholar 

  38. Kang, B. K.; Im, S. Y.; Lee, J.; Kwag, S. H.; Kwon, S. B.; Tiruneh, S.; Kim, M. J.; Kim, J. H.; Yang, W. S.; Lim, B. et al. In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction. Nano Res. 2019, 12, 1605–1611.

    CAS  Google Scholar 

  39. Wan, X. J.; Wu, R.; Deng, J. H.; Nie, Y.; Chen, S. G.; Ding, W.; Huang, X.; Wei, Z. D. A metal-organic framework derived 3D hierarchical Co/N-doped carbon nanotube/nanoparticle composite as an active electrocatalyst for oxygen reduction in alkaline electrolyte. J. Mater. Chem. A2018, 6, 3386–3390.

    CAS  Google Scholar 

  40. Liu, S. J.; Amiinu, I. S.; Liu, X. B.; Zhang, J.; Bao, M. J.; Meng, T.; Mu, S. C. Carbon nanotubes intercalated Co/N-doped porous carbon nanosheets as efficient electrocatalyst for oxygen reduction reaction and zinc-air batteries. Chem. Eng. J. 2018, 342, 163–170.

    CAS  Google Scholar 

  41. Jiang, R.; Li, L.; Sheng, T.; Hu, G. F.; Chen, Y. G.; Wang, L. Y. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 2018, 140, 11594–11598.

    CAS  Google Scholar 

  42. Wang, J. P.; Han, G. K.; Wang, L. G.; Du, L.; Chen, G. Y.; Gao, Y. Z.; Ma, Y. L.; Du, C. Y.; Cheng, X. Q.; Zuo, P. J. et al. ZIF-8 with ferrocene encapsulated: A promising precursor to single-atom Fe embedded nitrogen-doped carbon as highly efficient catalyst for oxygen electroreduction. Small2018, 14, 1704282.

    Google Scholar 

  43. Qin, Q.; Jang, H.; Li, P.; Yuan, B.; Liu, X. E.; Cho, J. A tannic acid-derived N-, P-codoped carbon-supported iron-based nanocomposite as an advanced trifunctional electrocatalyst for the overall water splitting cells and zinc-air batteries. Adv. Energy Mater. 2019, 9, 1803312.

    Google Scholar 

  44. Wang, R.; Dong, X. Y.; Du, J.; Zhao, J. Y.; Zang, S. Q. MOF-derived bifunctional Cu3P nanoparticles coated by a N,P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv. Mater. 2018, 30, 1703711.

    Google Scholar 

  45. Xue, X. Y.; Yang, H.; Yang, T.; Yuan, P. F.; Li, Q.; Mu, S. C.; Zheng, X. L.; Chi, L. F.; Zhu, J.; Li, Y. G. et al. N,P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO2RR, ORR and Zn-air battery. J. Mater. Chem. A2019, 7, 15271–15277.

    CAS  Google Scholar 

  46. Li, Y. H.; Chen, B. X.; Duan, X. Z.; Chen, S. M.; Liu, D. B.; Zang, K. T.; Si, R.; Lou, F. L.; Wang, X. H.; Rønning, M. et al. Atomically dispersed Fe-N-P-C complex electrocatalysts for superior oxygen reduction. Appl. Catal. B: Environ. 2019, 249, 306–315.

    CAS  Google Scholar 

  47. Bi, Z. H.; Huo, L.; Kong, Q. Q.; Li, F.; Chen, J. P.; Ahmad, A.; Wei, X. X.; Xie, L. J.; Chen, C. M. Structural evolution of phosphorus species on graphene with a stabilized electrochemical interface. ACS Appl. Mater. Interfaces2019, 11, 11421–11430.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFA0202603) and the National Natural Science Foundation of China (No. 51672204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daping He or Shichun Mu.

Electronic Supplementary Material

12274_2020_2702_MOESM1_ESM.pdf

ZIF-8/LiFePO4 derived Fe-N-P Co-doped carbon nanotube encapsulated Fe2P nanoparticles for efficient oxygen reduction and Zn-air batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, H., Zhou, H., Ji, P. et al. ZIF-8/LiFePO4 derived Fe-N-P Co-doped carbon nanotube encapsulated Fe2P nanoparticles for efficient oxygen reduction and Zn-air batteries. Nano Res. 13, 818–823 (2020). https://doi.org/10.1007/s12274-020-2702-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2702-3

Keywords

Navigation