Skip to main content
Log in

Effect of Oleic Acid, Cholesterol, and Octadecylamine on Membrane Stability of Freeze-Dried Liposomes Encapsulating Natural Antimicrobials

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Liposomes have been broadly studied as delivery systems for bioactive compounds, although its relatively low stability remains a limitation for commercial application. In this study, phosphatidylcholine (PC) liposomes were prepared entrapping a mixture of garlic extract (GE) and nisin (Nis) using cholesterol (CHO), oleic acid (OA), or octadecylamine (ODA) as membrane stabilizers to evaluate their physical, chemical, bioactive, and stability properties, in fully hydrated state and after freeze-drying. GE/Nis-loaded liposomes presented hydrodynamic diameter below 200 nm and polydispersity index below 0.30, typical for small unilamellar vesicles produced by thin film method. Under induced oxidation, the PC-OA-GE/Nis liposomes presented 91% less lipid peroxidation compared with the unloaded PC liposomes. The Fourier transform infrared spectroscopy (FTIR) analysis revealed a high level of hydrogen bonds in the polar head group of PC after addition of GE/Nis in all liposome formulations, in agreement to the high values of water activity and hygroscopicity found in the samples after freeze-drying. During 5 months storage at 4 °C, fully hydrated and lyophilized liposomes showed an increment in their average size and polydispersity index, but these values were reduced by the trehalose addition as lyoprotector. All liposome preparations maintained 100% activity against Listeria monocytogenes; nevertheless, a gradual reduction of activity against Salmonella enterica serovar Enteritidis was observed, suggesting a partial loss of GE active compounds. Despite some physical modifications, freeze-dried liposomes containing OA as stabilizer showed best antimicrobial properties and high lipid oxidation resistance, constituting a promising approach to stabilize GE/Nis for long-term storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aditya, N. P., & Ko, S. (2015). Solid lipid nanoparticles (SLNs): Delivery vehicles for food bioactives. RSC Advances, 5, 30902–30911.

    Article  CAS  Google Scholar 

  • Alemán, A., Mastrogiacomo, I., López-Caballero, Ferrari, B., Montero, P., & Gómez-Guillén, M. C. (2016). A novel functional wrapping design by complexation of ε-polylysine with liposome entrapping bioactive peptides. Food and Bioprocess Technology, 9, 1113–1124.

    Article  CAS  Google Scholar 

  • Bhattacharya, S., & Haldar, S. (2000). Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain-backbone linkage. Biochimica et Biophysica Acta, 1467, 39–53.

    Article  CAS  PubMed  Google Scholar 

  • Cacela, C., & Hincha, D. K. (2006). Monosaccharide composition, chain length and linkage type influence the interactions of oligosaccharides with dry phosphatidylcholine membranes. Biochimica et Biophysica Acta, 1758(5), 680–691.

    Article  CAS  PubMed  Google Scholar 

  • Celli, G. B., Ghanem, A., & Brooks, M. S. L. (2015). Bioactive encapsulated powders for functional foods - A review of methods and current limitations. Food and Bioprocess Technology, 8, 1825–1837.

    Article  CAS  Google Scholar 

  • Chen, C., Han, D., & Tang, X. (2010). An overview of liposome lyophilization and its future potential. Journal of Controled Release, 142, 299–311.

    Article  CAS  Google Scholar 

  • Cotelle, N. (2001). Role of flavonoids in oxidative stress. Current Topics in Medicinal Chemistry, 1(6), 569–590.

    Article  CAS  PubMed  Google Scholar 

  • Crowe, J., Hoekstra, F., Nguyen, K., & Crowe, L. (1996). Is vitrification involved in depression of the phase transition temperature in dry phospholipids? Biochimica et Biophysica Acta, 1280(2), 187–196.

    Article  PubMed  Google Scholar 

  • Doxastakis, M., Sum, A. K., & Pablo, J. J. (2005). Modulating membrane properties: The effect of trehalose and cholesterol on a phospholipid bilayer. Journal of Physical Chemistry B, 109, 24173–24181.

    Article  CAS  PubMed  Google Scholar 

  • García-Toledo, J. A., Torrestiana-Sánchez, B., Martínez-Sánchez, C. E., Tejero-Andrade, J. M., García-Bórquez, A., & Mendoza-García, P. G. (2019). Nanoencapsulation of a bacteriocin from Pediococcus acidilactici ITV26 by microfluidization. Food and Bioprocess Technology, 12, 88–97.

    Article  CAS  Google Scholar 

  • Ghasemi, K., Bolandnazar, S., Tabatabaei, S. J., Pirdashti, H., Arzanlou, M., Ebrahimzadeh, M. A., & Fathi, H. (2015). Antioxidant properties of garlic as affected by selenium and humic acid treatments. New Zealand Journal of Crop and Horticultural Science, 43, 173–181.

    Article  CAS  Google Scholar 

  • Gibbs, B. F., Kermasha, S., Alli, I., & Mulligan, C. N. (1999). Encapsulation in the food industry: A review. International Journal of Food Science and Nutrition, 50, 213–224.

    Article  CAS  Google Scholar 

  • Gibis, M., Zeeb, B., & Weiss, J. (2014). Formation, characterization, and stability of encapsulated hibiscus extract in multilayered liposomes. Food Hydrocolloids, 38, 28–39.

    Article  CAS  Google Scholar 

  • Godoy, C. A., Valiente, M., Pons, R., & Montalvo, G. (2015). Effect of fatty acids on self-assembly of soybean lecithin systems. Colloids and Surfaces B: Biointerfaces, 131, 21–29.

    Article  CAS  PubMed  Google Scholar 

  • Herec, M., Islamov, A., Kuklin, A., Gagos, M., & Gruszecki, W. I. (2007). Effect of antibiotic amphotericin B on structural and dynamic properties of lipid membranes formed with egg yolk phosphatidylcholine. Chemistry and Physics of Lipids, 147(2), 78–86.

    Article  CAS  PubMed  Google Scholar 

  • Ingvarsson, P. T., Yang, M., Nielsen, H. M., Rantanen, J., & Foged, C. (2011). Stabilization of liposomes during drying. Expert Opinion in Drug Delivery, 8, 375–388.

    Article  CAS  Google Scholar 

  • Jang, H. J., Lee, H. J., Yoon, D. K., Ji, D. S., Kim, J. H., & Lee, C. H. (2017). Antioxidant and antimicrobial activities of fresh garlic and aged garlic by-products extracted with different solvents. Food Science and Biotechnology, 27, 219–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, C., Barnett, J., & Reaven, P. D. (1998). Liposomes enriched in oleic acid are less susceptible to oxidation and have less proinflammatory activity when exposed to oxidizing conditions. Journal of Lipid Research, 39(6), 1239–1247.

    CAS  PubMed  Google Scholar 

  • Lee, J., Chi, G.-Y., & Lim, J. (2017). Effect of fatty acid on the membrane fluidity of liposomes. Applied Chemical Engineering, 28, 177–185.

    Google Scholar 

  • Lopes, N. A., & Brandelli, A. (2018). Nanostructures for delivery of natural antimicrobials in food. Critical Reviews in Food Science and Nutrition, 58(13), 2202–2212.

    Article  CAS  PubMed  Google Scholar 

  • Lopes de Azambuja, C. R., dos Santos, L. G., Rodrigues, M. R., Rodrigues, R. F. M., da Silveira, E. F., Azambuja, J. H., Flores, A. F., Horn, A. P., Dora, C. L., Mucillo-Baisch, A. L., Braganhol, E., Pinto, L. S., Parize, A. L., & Lima, V. R. (2015). Physico-chemical characterization of azolectin-genistein liposomal system: An approach to analyze its in vitro antioxidant potential and effect in glioma cells viability. Chemistry and Physics of Lipids, 193, 24–35.

    Article  CAS  PubMed  Google Scholar 

  • Lopes, N. A., Pinilla, C. M. B., & Brandelli, A. (2019). Antimicrobial activity of lysozyme-nisin co-encapsulated in liposomes coated with polysaccharides. Food Hydrocolloids, 93, 1–9.

    Article  CAS  Google Scholar 

  • Luzardo, M., Amalfa, F., Nunez, A., Díaz, S., Biondi de Lopez, A. C., & Disalvo, E. A. (2000). Effect of trehalose and sucrose on the hydration and dipole potential of lipid bilayers. Biophysical Journal, 78(5), 2452–2458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manrique-Moreno, M., Garidel, P., Suwalsky, M., Howe, J., & Brandenburg, K. (2009). The membrane-activity of ibuprofen, diclofenac, and naproxen: A physico-chemical study with lecithin phospholipids. Biochimica et Biophysica Acta, 1788(6), 1296–1303.

    Article  CAS  PubMed  Google Scholar 

  • Marín, D., Alemán, A., Montero, P., & Gómez-Guillén, M. C. (2018a). Encapsulation of food waste compounds in soy phosphatidylcholine liposomes: Effect of freeze-drying, storage stability and functional aptitude. Journal of Food Engineering, 223, 132–143.

    Article  CAS  Google Scholar 

  • Marín, D., Alemán, A., Sánchez-Faure, A., Montero, P., & Gómez-Guillén, M. C. (2018b). Freeze-dried phosphatidylcholine liposomes encapsulating various antioxidant extracts from natural waste as functional ingredients in surimi gels. Food Chemistry, 245, 525–535.

    Article  CAS  PubMed  Google Scholar 

  • Mattheolabakis, G., Nie, T., Constantinides, P. P., & Rigas, B. (2012). Sterically stabilized liposomes incorporating the novel anticancer agent phospho-ibuprofen (MDC-917): Preparation, characterization, and in vitro/in vivo evaluation. Pharmaceutical Research, 29(6), 1435–1443.

    Article  CAS  PubMed  Google Scholar 

  • McClements, D. J. (2015). Nanoscale nutrient delivery systems for food applications: Improving bioactive dispersibility, stability, and bioavailability. Journal of Food Science, 80, 1602–1611.

    Article  CAS  Google Scholar 

  • Mohan, A., Rajendran, R. C. K., Thibodeau, J., Bazinet, L., & Udenigwe, C. C. (2018). Liposome encapsulation of anionic and cationic whey peptides: Influence of peptide net charge on properties of the nanovesicles. LWT Food Science and Technology, 87, 40–46.

    Article  CAS  Google Scholar 

  • Moraes, M., Carvalho, J. M. P., Silva, C. R., Cho, S., Sola, M. R., & Pinho, S. C. (2013). Liposomes encapsulating beta-carotene produced by the proliposomes method: Characterisation and shelf life of powders and phospholipid vesicles. International Journal of Food Science and Technology, 48, 274–282.

    Article  CAS  Google Scholar 

  • Mosca, M., Ceglie, A., & Ambrosone, L. (2011). Effect of membrane composition on lipid oxidation in liposomes. Chemistry and Physics of Lipids, 164(2), 158–165.

    Article  CAS  PubMed  Google Scholar 

  • Moussa, S. H., Tayel, A. A., Al-Hassan, A. A., & Farouk, A. (2013). Tetrazolium/Formazan test as an efficient method to determine fungal chitosan antimicrobial activity. The Journal of Mycology, 2013, 753692.

    Google Scholar 

  • Nalinanon, S., Benjakul, S., Kishimura, H., & Shahidi, F. (2011). Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chemistry, 124, 1354–1362.

    Article  CAS  Google Scholar 

  • Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., & Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Proceedings in Food Science, 1, 1806–1815.

    Article  CAS  Google Scholar 

  • Nogueira, A. O. M., de Sousa, R. S., Pereira, L. S., Mallmann, C., Ferreira, A. S., Clementin, R. M., & de Lima, V. R. (2018). Physicochemical interactions among α-eleostearic acid-loaded liposomes applied to the development of drug delivery systems. Journal of Molecular Structure, 1154, 248–255.

    Article  CAS  Google Scholar 

  • Ohkawa, H., Ohishi, H., & Yagi, K. (1979). Assay for lipid peroxide in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358.

    Article  CAS  PubMed  Google Scholar 

  • Pamunuwa, G., Karunaratne, V., & Karunaratne, N. D. (2016). Effect of lipid composition on in vitro release and skin deposition of curcumin encapsulated liposomes. Journal of Nanomaterials, 2016, 4535790.

    Article  CAS  Google Scholar 

  • Pinilla, C. M. B., & Brandelli, A. (2016). Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against gram-positive and gram-negative bacteria in milk. Innovative Food Science and Emerging Technologies, 36, 287–293.

    Article  CAS  Google Scholar 

  • Pinilla, C. M. B., Noreña, C. P. Z., & Brandelli, A. (2017). Development and characterization of phosphatidylcholine nanovesicles, containing garlic extract, with antilisterial activity in milk. Food Chemistry, 220, 470–476.

    Article  CAS  PubMed  Google Scholar 

  • Pinilla, C. M. B., Thys, R. C. S., & Brandelli, A. (2019). Antifungal properties of phosphatidylcholine-oleic acid liposomes encapsulating garlic against environmental fungal in wheat bread. International Journal of Food Microbiology, 293, 72–78.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Jimenes, G. C., Páramo-Calderón, D. E., Wall-Martínez, H. A., Robles-Olvera, V. J., Valerio-Alfaro, G., & García-Alvarado, M. A. (2014). Effect of process variables on spray-dried garlic juice quality evaluated by multivariate statistic. Food and Bioprocess Technology, 7, 2434–2442.

    Article  CAS  Google Scholar 

  • Sebaaly, C., Greige-Gerges, H., Stainmesse, S., Fessi, H., & Charcosset, C. (2016). Effect of composition, hydrogenation of phospholipids and lyophilization on the characteristics of eugenol-loaded liposomes prepared by the ethanol injection method. Food Bioscience, 15, 1–10.

  • Severcan, F., Sahin, I., & Kazanci, N. (2005). Melatonin strongly interacts with zwitterionic model membranes - evidence from Fourier transform infrared spectroscopy and differential scanning calorimetry. Biochimica et Biophysica Acta, 1668(2), 215–222.

    Article  CAS  PubMed  Google Scholar 

  • Sherry, M., Charcosset, C., Fessi, H., & Greige-Gerges, H. (2013). Essential oils encapsulated in liposomes: A review. Journal of Liposome Research, 23(4), 268–275.

    Article  CAS  PubMed  Google Scholar 

  • Singh, H., Thompson, A., Liu, W., & Corredig, M. (2012). Liposomes as food ingredients and nutraceutical delivery systems. In D. J. McClements (Ed.), Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals (pp. 287–304). Oxford: Woodhead Publishing.

    Chapter  Google Scholar 

  • Sousa, R. S., Nogueira, A. O. M., Marques, V. G., Clementin, R. M., & de Lima, V. R. (2013). Effects of α-eleostearic acid on asolectin liposomes dynamics: Relevance to its antioxidant activity. Bioorganic Chemistry, 51, 8–15.

    Article  CAS  PubMed  Google Scholar 

  • Sun-Waterhouse, D., & Waterhouse, G. I. N. (2015). Spray drying of green or gold kiwifruit juice-milk mixtures; novel formulations and processes to retain natural fruit colour and antioxidants. Food and Bioprocess Technology, 8, 191–207.

    Article  CAS  Google Scholar 

  • Tai, K., He, X., Yuan, X., Meng, K., Gao, Y., & Yuan, F. (2017). A comparison of physicochemical and functional properties of icaritin-loaded liposomes based on different surfactants. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 518, 218–231.

    Article  CAS  Google Scholar 

  • Toniazzo, T., & Pinho, S. C. (2016). Lyophilized liposomes for food applications: Fundamentals, processes, and potential applications. In J. M. Lakkis (Ed.), Encapsulation and controlled release technologies in food systems (pp. 78–96). London: Wiley Blackwell.

    Chapter  Google Scholar 

  • Tonon, R. V., Brabet, C., & Hubinger, M. D. (2008). Influence of process conditions on the physicochemical properties of acai (Euterpe oleraceae Mart.) powder produced by spray drying. Journal of Food Engineering, 88, 411–418.

    Article  Google Scholar 

  • van Winden, E. C. A. (2003). Freeze-drying of liposomes: Theory and practice. Methods in Enzymology, 367, 99–110.

    Article  PubMed  Google Scholar 

  • Viljanen, K., Kylli, P., Kivikari, R., & Heinonen, M. (2004). Inhibition of protein and lipid oxidation in liposomes by berry phenolics. Journal of Agricultural and Food Chemistry, 52(24), 7419–7424.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, D., Davidson, P. M., & Zhong, Q. (2011). Spray-dried zein capsules with coencapsulated nisin and thymol as antimicrobial delivery system for enhanced antilisterial properties. Journal of Agricultural and Food Chemistry, 59(13), 7393–7404.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, P. A., Yokota, D., Foglio, M. A., Rodrigues, R. A. F., & Pinho, S. C. (2010). Liposomes incorporating essential oil of Brazilian cherry (Eugenia uniflora L.): Characterization of aqueous dispersions and lyophilized formulations. Journal of Microencapsulation, 2, 416–425.

    Article  Google Scholar 

Download references

Funding

This work received financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) (grant 306936/2017-8) and PhD scholarship from CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Brandelli.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinilla, C.M.B., Reque, P.M. & Brandelli, A. Effect of Oleic Acid, Cholesterol, and Octadecylamine on Membrane Stability of Freeze-Dried Liposomes Encapsulating Natural Antimicrobials. Food Bioprocess Technol 13, 599–610 (2020). https://doi.org/10.1007/s11947-020-02419-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-020-02419-8

Keywords

Navigation