Skip to main content
Log in

Synthesis and surface characterization of electrodeposited quaternary chalcogenide \(\hbox {Cu}_{2}\hbox {Zn}_{x}\hbox {Sn}_{y}\hbox {S}_{1+x+2y}\) thin film as transparent contact electrode

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A low-cost technique, electrochemical deposition has been used to grow nanocrystalline quaternary Cu–Zn–Sn–S (CZTS) on indium tin oxide (ITO)-coated glass substrate. Effects of variations in deposition potentials and sulphur content on the chemical composition, optical, morphological, structural and electrical properties of the deposited films have been investigated. The morphologies showed and confirmed the results from XRD analysis that the films are of polycrystalline grains. Average interplanar spacing of the films is 3.376 Å. The average film’s thickness as estimated from Rutherford back-scattered spectroscopy studies was 34 nm. The estimated stoichiometry was found to be that of \(\hbox {Cu}_{{{2}}}\hbox {ZnSnS}_{{{4}}}\) tetragonal kesterite structure. Optical studies showed that the absorption characteristic of the deposited CZTS film across the wavelength region is significantly dependent on growth deposition potentials and electrolyte concentration. Estimated band gap is between 1.75 and 1.81 eV. The electrical studies showed that the deposited films exhibit ohmic characteristics. This study demonstrated successful deposition of tetragonal kesterite structures of CZTS using a two-electrode cell approach. It also revealed the novel route of growing CZTS thin film over the conventional three electrode cells.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Repins I, Contreras M A, Egaas B, DeHart C, Scharf J, Perkins C L et al 2008 Prog. Photovoltaics Res. Appl. 16 235

    Article  CAS  Google Scholar 

  2. Mitzi D B 2009 Adv. Mater. 21 3141

    Article  CAS  Google Scholar 

  3. Mitzi D B, Yuan M, Liu W, Kellock A J, Chey S J, Deline V et al 2008 Adv. Mater. 20 3657

    Article  CAS  Google Scholar 

  4. Britt J and Ferekides C 1993 Appl. Phys. Lett. 62 2851

    Article  CAS  Google Scholar 

  5. Green M A, Emery K, Hishikawa Y, Warta W and Dunlop W D 2012 Prog. Photovoltaics Res. Appl.20 12

    Article  Google Scholar 

  6. Guo Q, Hillhouse H W and Agrawal R 2009 J. Am. Chem. Soc. 131 11672

    Article  CAS  Google Scholar 

  7. Steinhagen C, Panthani M G, Akhavan V, Goodfellow B, Koo B and Korgel B A 2009 J. Am. Chem. Soc. 131 12554

    Article  CAS  Google Scholar 

  8. Pawar S M, Inamdar A I, Pawar B S, Gurav K V, Shin S W, Xiao Y et al 2014 Mater. Lett.118 76

    Article  CAS  Google Scholar 

  9. Wang K, Gunawan O, Todorov T, Shin B, Chey S J, Bojarczuk N A et al 2010 Appl. Phys. Lett.97 143508

    Article  Google Scholar 

  10. Vanalakar S A, Agawane G L, Shin S W, Suryawanshi M P, Gurav K V, Jeon K S et al 2015 J. Alloys Compd.619 109

    Article  CAS  Google Scholar 

  11. Lee S G, Kim J M, Woo H S, Jo Y C, Inamdar A I, Pawar S M et al 2014 Curr. Appl. Phys.14 254

    Article  Google Scholar 

  12. Bhosale S M, Suryawanshi M P, Gaikwad M A, Bhosale P N and Kim J H 2014 Mater. Lett.129 153

    Article  CAS  Google Scholar 

  13. Tanaka K, Fukui Y, Moritake N and Uchiki H 2011 Sol. Energy Mater. Sol. Cells95 838

    Article  CAS  Google Scholar 

  14. Swami S K, Kumar A and Dutta V 2013 Energy Proc.33 198

    Article  CAS  Google Scholar 

  15. Gao C, Schnabel T, Abzieher T, Krammer C, Powalla M, Kalt H et al 2014 Thin Solid Films562 621

    Article  CAS  Google Scholar 

  16. Parthibaraj V, Tamilarasan K, Pugazhvadivu K S and Rangasami C 2015 Int. J. Innov. Res. Sci. Eng. Technol. 4 670

    Google Scholar 

  17. Cullity B D and Stock S R (eds) 1956 The directions of diffracted beams: elements of X-ray diffraction (USA: Addison-Wesley Publishing Co.) p 78

  18. Yıldırım M A and Ateş A 2009 Sens. Actuators A Phys. 155 272

    Article  Google Scholar 

  19. Aldalbahi A, Mkawi E M, Ibrahim K and Farrukh M A 2016 Sci. Rep. 6 32431

    Article  CAS  Google Scholar 

  20. Tanaka K, Fukui Y, Moritake N and Uchiki H 2011 Sol. Energy Mat. Sol. Cells 95 838

    Article  CAS  Google Scholar 

  21. Shin S W, Pawar S M, Park C Y, Yun J H, Moon J H, Kim J H et al 2011 Sol. Energy Mat. Sol. Cells 95 3202

    Article  CAS  Google Scholar 

  22. Sakthivel S and Baskaran V 2013 Nano Vision 3 123

    Google Scholar 

  23. Chaudhari S, Palli S, Kannan P K and Dey S R 2016 Thin Solid Films 600 169

    Article  CAS  Google Scholar 

  24. Katagiri H, Jimbo K, Maw W S, Oishi K, Yamazaki M, Araki H et al 2009 Thin Solid Films 517 2455

    Article  CAS  Google Scholar 

  25. Sarswat P K, Snure M, Free M L and Tiwari A 2012 Thin Solid Films 520 1694

    Article  CAS  Google Scholar 

  26. Chen H, Ye Q, He X, Ding J, Zhang Y, Han J et al 2014 Green Chem. 16 3841

  27. Sani R, Manivannan R and Victoria S N 2017 Chalcogenide Lett. 14 165

    CAS  Google Scholar 

  28. Chiad S S 2015 Int. Lett. Chem. Phys. Astron. 6 50

    Article  Google Scholar 

  29. Hassanien A S and Akl A A 2015 J. Alloys Compd. 648 280

    Article  CAS  Google Scholar 

  30. Henry J, Mohanraj K and Sivakumar G 2016 J. Asian Ceram. Soc. 4 81

    Article  Google Scholar 

  31. Mwathe P, Musembi R, Munji M, Odari V, Munguti L, Ntilakigwa A et al 2014 Coatings 4 747

    Article  Google Scholar 

  32. Digraskar R, Dhanayat S, Gattu K, Mahajan S, Upadhye D, Ghule A et al 2013 in AIP Conference Proceedings, vol 1512, p 236

Download references

Acknowledgements

This work is based on research supported by The World Academy of Science (TWAS) of the Abdus Salam International Centre for Theoretical Physics (ICTP) Trieste, Italy. The Grant number is 15-049 RG/PHYS/AF/AC_I-FR3240287081. We kindly appreciate the support of Mr M A Rahman of Chemistry Laboratory, in the Department of Chemistry, Obafemi Awolowo University. Efforts of members of staff of Materials Science Laboratory in the Department of Physics & Engineering Physics are also acknowledged. We are also thankful to members of staff of Carbon-Technology Laboratory at Department of Physics, University of Pretoria, Pretoria, South Africa, for their assistance on SEM and XRD characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B A Taleatu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busari, R.A., Taleatu, B.A., Adewinbi, S.A. et al. Synthesis and surface characterization of electrodeposited quaternary chalcogenide \(\hbox {Cu}_{2}\hbox {Zn}_{x}\hbox {Sn}_{y}\hbox {S}_{1+x+2y}\) thin film as transparent contact electrode. Bull Mater Sci 43, 83 (2020). https://doi.org/10.1007/s12034-019-2030-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-2030-y

Keywords

Navigation