Skip to main content
Log in

Study on thermodynamic, electronic and magnetic properties of \(\hbox {RE}_{2}\hbox {Cu}_{2}\hbox {Cd }(\hbox {RE}=\hbox {Dy}{-}\hbox {Tm})\) intermetallics: first-principle calculation

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

\(\hbox {RE}_{2}\hbox {Cu}_{2}\hbox {Cd}\) (\(\hbox {RE} =\) heavy rare earth elements: Dy, Ho, Er, Tm) intermetallics show the interesting physical, magnetic and chemical properties with reference to magnetocaloric effect. To explore the relevant complex performance of \(\hbox {RE}_{2}\hbox {Cu}_{2}\hbox {Cd}\) materials, which crystallizes in \(\hbox {Mo}_{2}\hbox {B}_{2}\hbox {Fe}\)-type structure with space group P4/mbm; electronic, magnetic and thermodynamic properties have been studied using first principle theory. Electronic properties, i.e. spin-polarized electron dispersion curves (band structure) and density of state calculations show that \((\hbox {Dy/Ho/Er/Tm})_{2}\hbox {Cu}_{2}\hbox {Cd}\) compounds are metallic with dominant character of Dy-f spin down channels. Whereas magnetic and electron spin-polarization calculations show that studied materials behave like metallic ferromagnet having nearly fully spin-polarized characteristics. The effect of temperature on bulk modulus, B, volume of unit cell, V, entropy, S and specific heat, \(C_\mathrm{v}\) has also been studied using quasi-harmonic Debye model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gschneidner Jr K A, Pecharsky V and Tsokol A 2005 Rep. Prog. Phys68 1479

    Article  CAS  Google Scholar 

  2. Zhang Y, Yang Y, Xu X, Geng S, Hou L, Li X et al 2016 Sci. Rep6 34192

    Article  CAS  Google Scholar 

  3. Franco V, Blázquez J, Ingale B and Conde A 2012 Annu. Rev. Mater. Res42 305

    Article  CAS  Google Scholar 

  4. Li L-W 2016 Chin. Phys. B 25 037502

    Article  Google Scholar 

  5. Yi Y, Li L, Su K, Qi Y and Huo D 2017 Intermetallics 80 22

    Article  CAS  Google Scholar 

  6. Shen B, Sun J, Hu F, Zhang H and Cheng Z 2009 Adv. Mater21 4545

    Article  CAS  Google Scholar 

  7. Hu F-X, Shen B-G, Sun J-R, Cheng Z-H, Rao G-H and Zhang X-X 2001 Appl. Phys. Lett78 3675

    Article  CAS  Google Scholar 

  8. Li L, Yuan Y, Zhang Y, Namiki T, Nishimura K, Pöttgen R et al 2015 Appl. Phys. Lett107 132401

    Article  Google Scholar 

  9. Li L, Niehaus O, Kersting M and Pöttgen R 2014 Appl. Phys. Lett104 092416

    Article  Google Scholar 

  10. Liu E, Wang W, Feng L, Zhu W, Li G, Chen J et al 2012 Nat. Commun. 3 873

    Article  Google Scholar 

  11. Li L, Nishimura K, Hutchison W D, Qian Z, Huo D and Namiki T 2012 Appl. Phys. Lett. 100 152403

    Article  Google Scholar 

  12. Jensen J and Mackintosh A R 1991 Rare earth magnetism (Oxford: Clearendon Press)

    Google Scholar 

  13. Dar S A, Srivastava V, Sakalle U K and Pagare G 2018 Comput. Condens. Matter 14 137

    Article  Google Scholar 

  14. De Vries M, Mclaughlin A and Bos J-W 2010 Phys. Rev. Lett104 177202

    Article  Google Scholar 

  15. Carlo J, Clancy J, Aharen T, Yamani Z, Ruff J, Wagman J et al 2011 Phys. Rev. B 84 100404

    Article  Google Scholar 

  16. Buschow K, Bouten P and Miedema A 1982 Rep. Prog. Phys45 937

    Article  Google Scholar 

  17. Choe W, Miller G J and Levin E M 2001 J. Alloys Compd329 121

    Article  CAS  Google Scholar 

  18. Rayaprol S and Pöttgen R 2006 Phys. Rev. B 73 214403

    Article  Google Scholar 

  19. Rieger W, Nowotny H and Benesovsky F 1964 Chem. Mon. 95 1502

    Article  CAS  Google Scholar 

  20. Yang Y, Zhang Y, Xu X, Geng S, Hou L, Li X et al 2017 J. Alloys Compd692 665

    Article  CAS  Google Scholar 

  21. Zhang Y, Yang Y, Xu X, Hou L, Ren Z, Li X et al 2016 J. Phys. D: Appl. Phys49 145002

    Article  Google Scholar 

  22. Zhang Y, Xu X, Yang Y, Hou L, Ren Z, Li X et al 2016 J. Alloys Compd667 130

    Article  CAS  Google Scholar 

  23. Li L, Yi Y, Su K, Qi Y, Huo D and Pöttgen R 2016 J. Mater. Sci51 5421

    Article  CAS  Google Scholar 

  24. Tappe F and Pöettgen R 2011 Rev. Inorg. Chem31 5

    Article  CAS  Google Scholar 

  25. Birch F 1947 Phys. Rev71 809

    Article  CAS  Google Scholar 

  26. Murnaghan F 1944 Proc. Natl. Acad. Sci. USA 30 244

    Article  CAS  Google Scholar 

  27. Blaha P 2001 An augmented plane wave + local orbitals program for calculating crystal properties (Austria: Karlheinz Schwarz, Techn, Universität Wien)

  28. Rappoport D, Crawford N R M, Furche F and Burke K 2008 Which functional should I choose? E I solomon, R B King and R A Scott (eds) (Chichester: Wiley)

  29. Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett77 3865

    Article  CAS  Google Scholar 

  30. Blanco M, Francisco E and Luana V 2004 Comput. Phys. Commun158 57

    Article  CAS  Google Scholar 

  31. Otero-de-la-Roza A, Abbasi-Pérez D and Luaña V 2011 Comput. Phys. Commun182 2232

    Article  CAS  Google Scholar 

  32. Otero-de-la-Roza A and Luaña V 2011 Phys. Rev. B 84 184103

    Article  Google Scholar 

  33. Kandpal H C, Fecher G H and Felser C 2006 J. Phys. D: Appl. Phys. 40 1507

    Article  Google Scholar 

  34. Chand S, Singh R, Govindan A and Singh S 2015 Int. J. Mod. Phys. B 29 1550007

    Article  CAS  Google Scholar 

  35. Gregg J, Petej I, Jouguelet E and Dennis C 2002 J. Phys. D: Appl. Phys35 R121

    Article  CAS  Google Scholar 

  36. Blanco M, Pendás A M, Francisco E, Recio J and Franco R 1996 J. Mol. Struct.: Theochem. 368 245

    Article  CAS  Google Scholar 

  37. Petit A and Dulong P 1819 Ann. Chim. Phys10 395

    Google Scholar 

  38. Shulumba N 2015 Vibrations in solids from first principles lattice dynamics to high temperature phase stability nanostructured materials (Linköping: Linköping University Electronic Press) p 94

    Book  Google Scholar 

Download references

Acknowledgements

One of the authors, Arvind Kumar wants to acknowledge the financial support received from the UGC (F.30-374/2017(BSR)), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Kumar, S., Yadav, K. et al. Study on thermodynamic, electronic and magnetic properties of \(\hbox {RE}_{2}\hbox {Cu}_{2}\hbox {Cd }(\hbox {RE}=\hbox {Dy}{-}\hbox {Tm})\) intermetallics: first-principle calculation. Bull Mater Sci 43, 81 (2020). https://doi.org/10.1007/s12034-020-2038-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-2038-3

Keywords

Navigation