Skip to main content
Log in

A Short Peptide Designed from Late Embryogenesis Abundant Protein Enhances Acid Tolerance in Escherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Unsuitable pH is a major limiting factor for all organisms, and a low pH can lead to organism death. Late embryogenesis abundant (LEA) peptides confer tolerance to abiotic stresses including salinity, drought, high and low temperature, and ultraviolet radiation same as the LEA proteins from which they originate. In this study, LEA peptides derived from group 3 LEA proteins of Polypedilum vanderplanki were used to enhance low pH tolerance. Recombinant Escherichia coli BL21 (DE3) cells expressing the five designed LEA peptides were grown at pH 4, 3, and 2. The transformants showed higher growth capacity at low pH as compared to control cells. These results indicate that LEA peptide could prevent E. coli cell death under low pH conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CFU:

Colony-forming units

DMSO:

Dimethyl sulfoxide

IPTG:

Isopropylthio-d-galactoside

LB:

Luria-Bertani

LEA:

Late embryogenesis abundant

OD600 :

Optical density at 600 nm

PBS:

Phosphate-buffered saline

GDAR:

Glutamic acid-dependent acid resistance

References

  1. Kimmel, W. G. (1983). The impact of mine drainage on the stream ecosystem. Pennsylvania coal: resources, technology and utilization. The Pennsylvania Academy of Science Publication, 5(1), 424–437.

    Google Scholar 

  2. Fierer, N., Morse, J. L., Berthrong, S. T., Bernhardt, E. S., & Jackson, R. B. (2007). Environmental controls on the landscape-scale biogeography of stream bacterial communities. Ecology, 88(9), 2162–2173.

    Article  PubMed  Google Scholar 

  3. Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D., & Bertilsson, S. (2011). A guide to the natural history of freshwater lake bacteria. Microbiology and Molecular Biology Reviews, 75(1), 14–49.

    Article  CAS  PubMed  Google Scholar 

  4. Ren, L., Jeppesen, E., He, D., Wang, J., Liboriussen, L., Xing, P., & Wu, Q. L. (2015). pH influences the importance of niche-related and neutral processes in lacustrine bacterioplankton assembly. Applied and Environmental Microbiology, 81(9), 3104–3114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kochian, L. V., Piñeros, M. A., Liu, J., & Magalhaes, J. V. (2015). Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annual Review of Plant Biology, 66(1), 571–598.

    Article  CAS  PubMed  Google Scholar 

  6. Orcutt, D. M. (2000). The physiology of plants under stress: soil and biotic factors. John Wiley & Sons.

  7. Larcher, W. (2003). Physiological plant ecology: ecophysiology and stress physiology of functional groups (3rd ed.). Berlin: Springer-Verlag.

    Book  Google Scholar 

  8. López-Maury, L., Marguerat, S., & Bähler, J. (2008). Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nature Reviews Genetics, 9, 583–593.

    Article  PubMed  CAS  Google Scholar 

  9. Ramond, J. B., Welz, P. J., Le Roes-Hill, M., Tuffin, M. I., Burton, S. G., & Cowan, D. A. (2014). Selection of Clostridium spp. in biological sand filters neutralizing synthetic acid mine drainage. FEMS Microbiology Ecology, 87(3), 678–690.

    Article  CAS  PubMed  Google Scholar 

  10. Kochian, L. V., Hoekenga, O. A., & Piñeros, M. A. (2004). How do crop plants tolerate acid soils? Mechanisms of aluminium tolerance and phosphorous efficiency. Annual Review of Plant Biology, 55(1), 459–493.

    Article  CAS  PubMed  Google Scholar 

  11. Lund, P., Tramonti, A., & De Biase, D. (2014). Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiology Reviews, 38(6), 1091–1125.

    Article  CAS  PubMed  Google Scholar 

  12. Cuming, A. C. (1999). LEA proteins. In P. R. Shewry & R. Casey (Eds.), Seed proteins (pp. 753–780). Dordrecht: Springer.

    Chapter  Google Scholar 

  13. Galau, G. A., Hughes, D. W., & Dure, L. (1986). Abscisic acid induction of cloned cotton late embryogenesis-abundant (Lea) mRNAs. Plant Molecular Biology, 7(3), 155–170.

    Article  CAS  PubMed  Google Scholar 

  14. Silveira, V., Santa-Catarina, C., Balbuena, T. S., Moraes, F. M. S., Ricart, C. A. O., Sousa, M. V., Guerra, M. P., Handro, W., & Floh, E. I. S. (2008). Endogenous abscisic acid and protein contents during seed development of Araucaria angustifolia. Biologia Plantarum, 52(1), 101–104.

    Article  CAS  Google Scholar 

  15. Hincha, D. K., & Thalhammer, A. (2012). LEA proteins: IDPs with versatile functions in cellular dehydration tolerance. Biochemical Society Transactions, 40(5), 1000–1003.

    Article  CAS  PubMed  Google Scholar 

  16. Sogame, Y., & Kikawada, T. (2017). Current findings on the molecular mechanisms underlying anhydrobiosis in Polypedilum vanderplanki. Current Opinion in Insect Science, 19, 16–21.

    Article  PubMed  Google Scholar 

  17. Rodriguez-Salazar, J., Moreno, S., & Espín, G. (2017). LEA proteins are involved in cyst desiccation resistance and other abiotic stresses in Azotobacter vinelandii. Cell Stress and Chaperones, 22(3), 397–408.

    Article  CAS  PubMed  Google Scholar 

  18. Grelet, J., Benamar, A., Teyssier, E., Avelange-Macherel, M.-H., Grunwald, D., & Macherel, D. (2005). Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiology, 137(1), 157–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hong-Bo, S., Zong-Suo, L., & Ming-An, S. (2005). LEA proteins in higher plants: Structure, function, gene expression and regulation. Colloids and Surfaces B: Biointerfaces, 45(3–4), 131–135.

    Article  PubMed  CAS  Google Scholar 

  20. Gao, J., & Lan, T. (2016). Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli. Scientific Reports, 6(19467), 1–10.

    Google Scholar 

  21. Hundertmark, M., & Hincha, D. K. (2008). LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics, 9(1), 1–22.

    Article  CAS  Google Scholar 

  22. Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Engineering drought tolerance in plants: Discovering and tailoring genes to unlock the future. Current Opinion in Biotechnology, 17(2), 113–122.

    Article  CAS  PubMed  Google Scholar 

  23. Hand, S. C., Jones, D., Menze, M. A., & Witt, T. L. (2006). Life without water: Expression of plant LEA genes by an anhydrobiotic arthropod. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 307(1), 62–66.

    Google Scholar 

  24. Kikawada, T., Nakahara, Y., Kanamori, Y., Iwata, K. I., Watanabe, M., McGee, B., Tunnacliffe, A., & Okuda, T. (2006). Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochemical and Biophysical Research Communications, 348(1), 56–61.

    Article  CAS  PubMed  Google Scholar 

  25. Capitani, G., De Biase, D., Aurizi, C., Gut, H., Bossa, F., & Grütter, M. G. (2003). Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. The EMBO Journal, 22(16), 4027–4037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bergholz, T. M., Tarr, C. L., Christensen, L. M., Betting, D. J., & Whittam, T. S. (2007). Recent gene conversions between duplicated glutamate decarboxylase genes (gadA and gadB) in pathogenic Escherichia coli. Molecular Biology and Evolution, 24(10), 2323–2333.

    Article  CAS  PubMed  Google Scholar 

  27. Pathak, N., & Ikeno, S. (2017). In vivo expression of a short peptide designed from late embryogenesis abundant protein for enhancing abiotic stress tolerance in Escherichia coli. Biochemical and Biophysical Research Communications, 492(3), 386–390.

    Article  CAS  PubMed  Google Scholar 

  28. Huwaidi, A., Pathak, N., Syahir, A., & Ikeno, S. (2018). Escherichia coli tolerance of ultraviolet radiation by in vivo expression of a short peptide designed from late embryogenesis abundant protein. Biochemical and Biophysical Research Communications, 503(2), 910–914.

    Article  CAS  PubMed  Google Scholar 

  29. Pathak, N., Hamada, H., & Ikeno, S. (2018). Construction and characterization of mutated LEA peptides in Escherichia coli to develop an efficient protein expression system. Journal of Molecular Recognition, 31(1), 1–6.

    Article  CAS  Google Scholar 

  30. Ikeno, S., & Haruyama, T. (2013). Boost protein expression through co-expression of LEA-like peptide in Escherichia coli. PLoS One, 8(12), e82824.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Winer, J., Jung, C. K. S., Shackel, I., & Williams, P. M. (1999). Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Analytical Biochemistry, 49, 41–49.

    Article  Google Scholar 

  32. Schmittgen, T. D., Zakrajsek, B. A., Mills, A. G., Gorn, V., Singer, M. J., & Reed, M. W. (2000). Quantitative reverse transcription–polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Analytical Biochemistry, 285(2), 194–204.

    Article  CAS  PubMed  Google Scholar 

  33. Jones, D. H. (1994). Statistical methods (8th ed.). Iowa State University Press.

  34. Hu, T., Zhu, S., Tan, L., Qi, W., He, S., & Wang, G. (2016). Overexpression of OsLEA4 enhances drought, high salt and heavy metal stress tolerance in transgenic rice (Oryza sativa L.). Environmental and Experimental Botany, 123, 68–77.

    Article  CAS  Google Scholar 

  35. Liu, Y., Liang, J., Sun, L., Yang, X., & Li, D. (2016). Group 3 LEA protein, ZmLEA3, is involved in protection from low temperature stress. Frontiers in Plant Science, 7, 1–10.

    CAS  Google Scholar 

  36. Zeng, X., Ling, H., Yang, J., Li, Y., & Guo, S. (2018). LEA proteins from Gastrodia elata enhance tolerance to low temperature stress in Escherichia coli. Gene, 646, 136–142.

    Article  CAS  PubMed  Google Scholar 

  37. Boudet, J., Buitink, J., Hoekstra, F. A., Rogniaux, H., Larré, C., Satour, P., & Leprince, O. (2006). Comparative analysis of the heat stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance. Plant Physiology, 140, 1418–1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. He, S., Tan, L., Hu, Z., Chen, G., Wang, G., & Hu, T. (2012). Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L. Molecular Genetics and Genomics, 287(1), 39–54.

    Article  CAS  PubMed  Google Scholar 

  39. Battaglia, M., & Covarrubias, A. A. (2013). Late Embryogenesis Abundant (LEA) proteins in legumes. Frontiers in Plant Science, 4, 1–11.

    Article  CAS  Google Scholar 

  40. Tunnacliffe, A., & Wise, M. J. (2007). The continuing conundrum of the LEA proteins. Naturwissenschaften, 94(10), 791–812.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, H., Wu, Y., Yang, X., Guo, X., & Cao, X. (2017). SmLEA2, a gene for late embryogenesis abundant protein isolated from Salvia miltiorrhiza, confers tolerance to drought and salt stress in Escherichia coli and S. miltiorrhiza. Protoplasma, 254(2), 685–696.

    Article  CAS  PubMed  Google Scholar 

  42. Shimizu, T., Kanamori, Y., Furuki, T., Kikawada, T., Okuda, T., Takahashi, T., Mihara, H., & Sakurai, M. (2010). Desiccation-induced structuralization and glass formation of group 3 late embryogenesis abundant protein model peptides. Biochemistry, 49(6), 1093–1104.

    Article  CAS  PubMed  Google Scholar 

  43. Briand, L., Marcion, G., Kriznik, A., Heydel, J. M., Artur, Y., Garrido, C., Seigneuric, R., & Neiers, F. (2016). A self-inducible heterologous protein expression system in Escherichia coli. Scientific Reports, 6, 33037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Paliy, O., & Gunasekera, T. S. (2007). Growth of E. coli BL21 in minimal media with different gluconeogenic carbon sources and salt contents. Applied Microbiology and Biotechnology, 73(5), 1169–1172.

    Article  CAS  PubMed  Google Scholar 

  45. Dvorak, P., Chrast, L., Nikel, P. I., Fedr, R., Soucek, K., Sedlackova, M., Chaloupkova, R., de Lorenzo, V., Prokop, Z., & Damborsky, J. (2015). Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway. Microbial Cell Factories, 14(1), 201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ginsburg, I., Van Heerden, P. V., & Koren, E. (2017). From amino acids polymers, antimicrobial peptides, and histones, to their possible role in the pathogenesis of septic shock: a historical perspective. Journal of Inflammation Research, 10, 7–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Woo, J. M., Kim, J. W., Song, J. W., Blank, L. M., & Park, J. B. (2016). Activation of the glutamic acid-dependent acid resistance system in Escherichia coli BL21(DE3) leads to increase of the fatty acid biotransformation activity. PLoS One, 11(9), 1–20.

    Article  CAS  Google Scholar 

  48. Foster, J. W. (2004). Escherichia coli acid resistance: tales of an amateur acidophile. Nature Reviews Microbiology, 2(11), 898–907.

    Article  CAS  PubMed  Google Scholar 

  49. Lange, R., & Hengge-Aronis, R. (1994). The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes and Development, 8(13), 1600–1612.

    Article  CAS  PubMed  Google Scholar 

  50. Gilsdorf, J., Gul, N., & Smith, L. A. (2006). Expression, purification, and characterization of Clostridium botulinum type B light chain. Protein Expression and Purification, 46(2), 256–267.

    Article  CAS  PubMed  Google Scholar 

  51. Lennen, R. M., & Herrgård, M. J. (2014). Combinatorial strategies for improving multiple-stress resistance in industrially relevant Escherichia coli strains. Applied and Environmental Microbiology, 80(19), 6223–6242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hayes, E. T., Wilks, J. C., Sanfilippo, P., Yohannes, E., Tate, D. P., Jones, B. D., Radmacher, M. D., BonDurant, S. S., & Slonczewski, J. L. (2006). Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12. BMC Microbiology, 6, 1–18.

    Article  CAS  Google Scholar 

  53. Goto, Y., Calciano, L. J., & Fink, A. L. (1990). Acid-induced folding of proteins. Proceedings of the National Academy of Sciences, 87(2), 573–577.

    Article  CAS  Google Scholar 

  54. Chourey, K., Ramani, S., & Apte, S. K. (2003). Accumulation of LEA proteins in salt (NaCl) stressed young seedlings of rice (Oryza sativa L.) cultivar Bura Rata and their degradation during recovery from salinity stress. Journal of Plant Physiology, 160(10), 1165–1174.

    Article  CAS  PubMed  Google Scholar 

  55. Reddy, A. R., Chaitanya, K. V., & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161(11), 1189–1202.

    Article  CAS  Google Scholar 

  56. Hong, W., Wu, Y. E., Fu, X., & Chang, Z. (2012). Chaperone-dependent mechanisms for acid resistance in enteric bacteria. Trends in Microbiology, 20(7), 328–335.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI (grant number 25820405).

Author information

Authors and Affiliations

Authors

Contributions

KM and SI conceived and designed the project, interpreted the data, analyzed the data and wrote the paper. KM performed experiments.

Corresponding author

Correspondence to Shinya Ikeno.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The presenting author of this manuscript in ACB2019 is Khaled Metwally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metwally, K., Ikeno, S. A Short Peptide Designed from Late Embryogenesis Abundant Protein Enhances Acid Tolerance in Escherichia coli. Appl Biochem Biotechnol 191, 164–176 (2020). https://doi.org/10.1007/s12010-020-03262-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03262-5

Keywords

Navigation