Skip to main content

Advertisement

Log in

Abnormal Intestinal Microbiome in Medical Disorders and Potential Reversibility by Fecal Microbiota Transplantation

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Reduction in diversity of the intestinal microbiome (dysbiosis) is being identified in many disease states, and studies are showing important biologic contributions of microbiome to health and disease. Fecal microbiota transplantation (FMT) is being evaluated as a way to reverse dysbiosis in diseases and disorders in an attempt to improve health. The published literature was reviewed to determine the value of FMT in the treatment of medical disorders for which clinical trials have recently been conducted. FMT is effective in treating recurrent C. difficile infection in one or two doses, with many healthy donors providing efficacious fecal-derived products. In inflammatory bowel disease (IBD), FMT may lead to remission in approximately one-third of moderate-to-severe illnesses with one study suggesting that more durable FMT responses may be seen when used once medical remissions have been achieved. Donor products differ in their efficacy in treatment of IBD. Combining donor products has been one way to increase the potential value of FMT in treating chronic disorders. FMT is being explored in a variety of clinical settings affecting different organ systems outside CDI, with positive preliminary signals, in treatment of functional constipation, immunotherapy-induced colitis, neurodegenerative disease, as well as prevention of cancer-related disorders like graft versus host disease and decolonization of patients with recurrent urinary tract infection due to antibiotic-resistant bacteria. Currently, intense research is underway to see how the microbiome products like FMT can be harnessed for health benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449:804–810.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Li J, Jia H, Cai X, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol. 2014;32:834–841.

    CAS  PubMed  Google Scholar 

  3. Eiseman B, Silen W, Bascom GS, Kauvar AJ. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery. 1958;44:854–859.

    CAS  PubMed  Google Scholar 

  4. Al-Jashaami LS, DuPont HL. Management of clostridium difficile infection. Gastroenterol Hepatol (N Y). 2016;12:609–616.

    Google Scholar 

  5. Human Microbiome Project C. Structure function and diversity of the healthy human microbiome. Nature. 2012;486:207–214.

    Google Scholar 

  6. Rizzatti G, Lopetuso LR, Gibiino G, Binda C, Gasbarrini A. Proteobacteria: a common factor in human diseases. Biomed Res Int. 2017;2017:9351507.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33:496–503.

    CAS  PubMed  Google Scholar 

  8. Zuo T, Wong SH, Cheung CP, et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat Commun. 2018;9:3663.

    PubMed  PubMed Central  Google Scholar 

  9. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 2015;26:26191.

    PubMed  Google Scholar 

  10. Bakken JS, Borody T, Brandt LJ, et al. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol. 2011;9:1044–1049.

    PubMed  PubMed Central  Google Scholar 

  11. Wilson BC, Vatanen T, Cutfield WS, O’Sullivan JM. The super-donor phenomenon in fecal microbiota transplantation. Front Cell Infect Microbiol. 2019;9:2.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. McSweeney B, Allegretti JR, Fischer M, et al. In search of stool donors: a multicenter study of prior knowledge, perceptions, motivators, and deterrents among potential donors for fecal microbiota transplantation. Gut Microbes. 2019;11:51–62.

    PubMed  PubMed Central  Google Scholar 

  13. Fang H, Fu L, Wang J. Protocol for fecal microbiota transplantation in inflammatory bowel disease: a systematic review and meta-analysis. Biomed Res Int. 2018;2018:8941340.

    PubMed  PubMed Central  Google Scholar 

  14. Papanicolas LE, Choo JM, Wang Y, et al. Bacterial viability in faecal transplants: Which bacteria survive? EBioMedicine. 2019;41:509–516.

    PubMed  PubMed Central  Google Scholar 

  15. Chu ND, Smith MB, Perrotta AR, Kassam Z, Alm EJ. Profiling living bacteria informs preparation of fecal microbiota transplantations. PLoS ONE. 2017;12:e0170922.

    PubMed  PubMed Central  Google Scholar 

  16. Jiang ZD, Jenq RR, Ajami NJ, et al. Safety and preliminary efficacy of orally administered lyophilized fecal microbiota product compared with frozen product given by enema for recurrent Clostridium difficile infection: a randomized clinical trial. PLoS ONE. 2018;13:e0205064.

    PubMed  PubMed Central  Google Scholar 

  17. Jiang ZD, Ajami NJ, Petrosino JF, et al. Randomised clinical trial: faecal microbiota transplantation for recurrent Clostridum difficile infection—fresh, or frozen, or lyophilised microbiota from a small pool of healthy donors delivered by colonoscopy. Aliment Pharmacol Ther. 2017;45:899–908.

    CAS  PubMed  Google Scholar 

  18. Lee CH, Steiner T, Petrof EO, et al. Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent clostridium difficile infection: a randomized clinical trial. JAMA. 2016;315:142–149.

    CAS  PubMed  Google Scholar 

  19. Tang G, Yin W, Liu W. Is frozen fecal microbiota transplantation as effective as fresh fecal microbiota transplantation in patients with recurrent or refractory Clostridium difficile infection: a meta-analysis? Diagn Microbiol Infect Dis. 2017;88:322–329.

    PubMed  Google Scholar 

  20. Costello SP, Conlon MA, Vuaran MS, Roberts-Thomson IC, Andrews JM. Faecal microbiota transplant for recurrent Clostridium difficile infection using long-term frozen stool is effective: clinical efficacy and bacterial viability data. Aliment Pharmacol Ther. 2015;42:1011–1018.

    CAS  PubMed  Google Scholar 

  21. Bircher L, Geirnaert A, Hammes F, Lacroix C, Schwab C. Effect of cryopreservation and lyophilization on viability and growth of strict anaerobic human gut microbes. Microb Biotechnol. 2018;11:721–733.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Staley C, Hamilton MJ, Vaughn BP, et al. Successful resolution of recurrent clostridium difficile infection using freeze-dried, encapsulated fecal microbiota; pragmatic cohort study. Am J Gastroenterol. 2017;112:940–947.

    PubMed  PubMed Central  Google Scholar 

  23. Anand R, Song Y, Garg S, et al. Effect of aging on the composition of fecal microbiota in donors for FMT and its impact on clinical outcomes. Dig Dis Sci. 2017;62:1002–1008.

    CAS  PubMed  Google Scholar 

  24. Kao D, Roach B, Silva M, et al. Effect of oral capsule- vs colonoscopy-delivered fecal microbiota transplantation on recurrent clostridium difficile infection: a randomized clinical trial. JAMA. 2017;318:1985–1993.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Allegretti JR, Fischer M, Sagi SV, et al. Fecal microbiota transplantation capsules with targeted colonic versus gastric delivery in recurrent clostridium difficile infection: a comparative cohort analysis of high and lose dose. Dig Dis Sci. 2019;64:1672–1678.

    CAS  PubMed  Google Scholar 

  26. Ossorio PN, Zhou Y. Regulating stool for microbiota transplantation. Gut Microbes. 2019;10:105–108.

    PubMed  Google Scholar 

  27. Verbeke F, Janssens Y, Wynendaele E, De Spiegeleer B. Faecal microbiota transplantation: a regulatory hurdle? BMC Gastroenterol. 2017;17:128.

    PubMed  PubMed Central  Google Scholar 

  28. Olle B. Medicines from microbiota. Nat Biotechnol. 2013;31:309–315.

    CAS  PubMed  Google Scholar 

  29. Kump P, Wurm P, Grochenig HP, et al. The taxonomic composition of the donor intestinal microbiota is a major factor influencing the efficacy of faecal microbiota transplantation in therapy refractory ulcerative colitis. Aliment Pharmacol Ther. 2018;47:67–77.

    CAS  PubMed  Google Scholar 

  30. Ma Y, Liu J, Rhodes C, Nie Y, Zhang F. Ethical issues in fecal microbiota transplantation in practice. Am J Bioeth. 2017;17:34–45.

    PubMed  Google Scholar 

  31. Khanna S, Shin A, Kelly CP. Management of clostridium difficile infection in inflammatory bowel disease: expert review from the clinical practice updates committee of the AGA Institute. Clin Gastroenterol Hepatol. 2017;15:166–174.

    PubMed  Google Scholar 

  32. Meighani A, Hart BR, Bourgi K, Miller N, John A, Ramesh M. Outcomes of fecal microbiota transplantation for clostridium difficile infection in patients with inflammatory bowel disease. Dig Dis Sci. 2017;62:2870–2875.

    PubMed  Google Scholar 

  33. Cheng YW, Phelps E, Ganapini V, et al. Fecal microbiota transplantation for the treatment of recurrent and severe Clostridium difficile infection in solid organ transplant recipients: a multicenter experience. Am J Transplant. 2019;19:501–511.

    CAS  PubMed  Google Scholar 

  34. Hefazi M, Patnaik MM, Hogan WJ, Litzow MR, Pardi DS, Khanna S. Safety and efficacy of fecal microbiota transplant for recurrent clostridium difficile infection in patients with cancer treated with cytotoxic chemotherapy: a single-institution retrospective case series. Mayo Clin Proc. 2017;92:1617–1624.

    CAS  PubMed  Google Scholar 

  35. Mintz M, Khair S, Grewal S, et al. Longitudinal microbiome analysis of single donor fecal microbiota transplantation in patients with recurrent Clostridium difficile infection and/or ulcerative colitis. PLoS ONE. 2018;13:e0190997.

    PubMed  PubMed Central  Google Scholar 

  36. Shogbesan O, Poudel DR, Victor S, et al. A systematic review of the efficacy and safety of fecal microbiota transplant for clostridium difficile infection in immunocompromised patients. Can J Gastroenterol Hepatol. 2018;2018:1394379.

    PubMed  PubMed Central  Google Scholar 

  37. Moss EL, Falconer SB, Tkachenko E, et al. Long-term taxonomic and functional divergence from donor bacterial strains following fecal microbiota transplantation in immunocompromised patients. PLoS ONE. 2017;12:e0182585.

    PubMed  PubMed Central  Google Scholar 

  38. Tariq R, Pardi DS, Bartlett MG, Khanna S. Low cure rates in controlled trials of fecal microbiota transplantation for recurrent clostridium difficile infection: a systematic review and meta-analysis. Clin Infect Dis. 2019;68:1351–1358.

    PubMed  Google Scholar 

  39. Khan MY, Dirweesh A, Khurshid T, Siddiqui WJ. Comparing fecal microbiota transplantation to standard-of-care treatment for recurrent Clostridium difficile infection: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2018;30:1309–1317.

    PubMed  Google Scholar 

  40. Hvas CL, Dahl Jorgensen SM, Jorgensen SP, et al. Fecal microbiota transplantation is superior to fidaxomicin for treatment of recurrent clostridium difficile infection. Gastroenterology. 2019;156:1324–1332.

    PubMed  Google Scholar 

  41. Hocquart M, Lagier JC, Cassir N, et al. Early Fecal Microbiota Transplantation Improves Survival in Severe Clostridium difficile Infections. Clin Infect Dis. 2018;66:645–650.

    CAS  PubMed  Google Scholar 

  42. van Beurden YH, Nieuwdorp M, van de Berg P, Mulder CJJ, Goorhuis A. Current challenges in the treatment of severe Clostridium difficile infection: early treatment potential of fecal microbiota transplantation. Therap Adv Gastroenterol. 2017;10:373–381.

    PubMed  PubMed Central  Google Scholar 

  43. Juul FE, Garborg K, Bretthauer M, et al. Fecal microbiota transplantation for primary clostridium difficile infection. N Engl J Med. 2018;378:2535–2536.

    PubMed  Google Scholar 

  44. Ianiro G, Valerio L, Masucci L, et al. Predictors of failure after single faecal microbiota transplantation in patients with recurrent Clostridium difficile infection: results from a 3-year, single-centre cohort study. Clin Microbiol Infect. 2017;23:337e1–e3.

    Google Scholar 

  45. Allegretti JR, Allegretti AS, Phelps E, Xu H, Kassam Z, Fischer M. Asymptomatic Clostridium difficile carriage rate post-fecal microbiota transplant is low: a prospective clinical and stool assessment. Clin Microbiol Infect. 2018;24:780e1–e3.

    Google Scholar 

  46. Staley C, Kaiser T, Vaughn BP, et al. Predicting recurrence of Clostridium difficile infection following encapsulated fecal microbiota transplantation. Microbiome. 2018;6:166.

    PubMed  PubMed Central  Google Scholar 

  47. Seekatz AM, Theriot CM, Rao K, et al. Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection. Anaerobe. 2018;53:64–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hibbard J, Jiang ZD, DuPont HL. Fecal calprotectin and fecal indole predict outcome of fecal microbiota transplantation in subjects with recurrent Clostridium difficile infection. Anaerobe. 2019;56:102–105.

    CAS  PubMed  Google Scholar 

  49. Farowski F, Solbach P, Tsakmaklis A, et al. Potential biomarkers to predict outcome of faecal microbiota transfer for recurrent Clostridioides difficile infection. Dig Liver Dis. 2019;51:944–951.

    CAS  PubMed  Google Scholar 

  50. Jalanka J, Hillamaa A, Satokari R, Mattila E, Anttila VJ, Arkkila P. The long-term effects of faecal microbiota transplantation for gastrointestinal symptoms and general health in patients with recurrent Clostridium difficile infection. Aliment Pharmacol Ther. 2018;47:371–379.

    CAS  PubMed  Google Scholar 

  51. Lee CH, Chai J, Hammond K, et al. Long-term durability and safety of fecal microbiota transplantation for recurrent or refractory Clostridioides difficile infection with or without antibiotic exposure. Eur J Clin Microbiol Infect Dis. 2019;38:1731–1735.

    CAS  PubMed  Google Scholar 

  52. Mamo Y, Woodworth MH, Wang T, Dhere T, Kraft CS. Durability and long-term clinical outcomes of fecal microbiota transplant treatment in patients with recurrent clostridium difficile infection. Clin Infect Dis. 2018;66:1705–1711.

    PubMed  Google Scholar 

  53. Allegretti JR, Kassam Z, Fischer M, Kelly C, Chan WW. Risk factors for gastrointestinal symptoms following successful eradication of clostridium difficile by fecal microbiota transplantation (FMT). J Clin Gastroenterol. 2019;53:e405–e408.

    PubMed  Google Scholar 

  54. Sethi S, Garey KW, Arora V, et al. Increased rate of irritable bowel syndrome and functional gastrointestinal disorders after Clostridium difficile infection. J Hosp Infect. 2011;77:172–173.

    CAS  PubMed  Google Scholar 

  55. Smillie CS, Sauk J, Gevers D, et al. Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation. Cell Host Microbe. 2018;23:229–240.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Staley C, Kelly CR, Brandt LJ, Khoruts A, Sadowsky MJ. Complete microbiota engraftment is not essential for recovery from recurrent clostridium difficile infection following fecal microbiota transplantation. MBio. 2016;7;e01965-16.

    Google Scholar 

  57. Broecker F, Klumpp J, Moelling K. Long-term microbiota and virome in a Zurich patient after fecal transplantation against Clostridium difficile infection. Ann N Y Acad Sci. 2016;1372:29–41.

    PubMed  Google Scholar 

  58. Brown JR, Flemer B, Joyce SA, et al. Changes in microbiota composition, bile and fatty acid metabolism, in successful faecal microbiota transplantation for Clostridioides difficile infection. BMC Gastroenterol. 2018;18:131.

    PubMed  PubMed Central  Google Scholar 

  59. Weingarden AR, Dosa PI, DeWinter E, et al. Changes in colonic bile acid composition following fecal microbiota transplantation are sufficient to control clostridium difficile germination and growth. PLoS ONE. 2016;11:e0147210.

    PubMed  PubMed Central  Google Scholar 

  60. Cheng S, Ma X, Geng S, et al. Fecal microbiota transplantation beneficially regulates intestinal mucosal autophagy and alleviates gut barrier injury. MSystems. 2018;3:e00137-18.

    PubMed  PubMed Central  Google Scholar 

  61. Ott SJ, Waetzig GH, Rehman A, et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology. 2017;152:799–811.

    PubMed  Google Scholar 

  62. Draper LA, Ryan FJ, Smith MK, et al. Long-term colonisation with donor bacteriophages following successful faecal microbial transplantation. Microbiome. 2018;6:220.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zuo T, Wong SH, Lam K, et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut. 2018;67:634–643.

    CAS  PubMed  Google Scholar 

  64. Lusiak-Szelachowska M, Weber-Dabrowska B, Jonczyk-Matysiak E, Wojciechowska R, Gorski A. Bacteriophages in the gastrointestinal tract and their implications. Gut Pathog. 2017;9:44.

    PubMed  PubMed Central  Google Scholar 

  65. DuPont AW, DuPont HL. The intestinal microbiota and chronic disorders of the gut. Nat Rev Gastroenterol Hepatol. 2011;8:523–531.

    PubMed  Google Scholar 

  66. Cold F, Browne PD, Gunther S, et al. Multidonor FMT capsules improve symptoms and decrease fecal calprotectin in ulcerative colitis patients while treated—an open-label pilot study. Scand J Gastroenterol. 2019;54:289–296.

    CAS  PubMed  Google Scholar 

  67. Mizuno S, Nanki K, Matsuoka K, et al. Single fecal microbiota transplantation failed to change intestinal microbiota and had limited effectiveness against ulcerative colitis in Japanese patients. Intest Res. 2017;15:68–74.

    PubMed  PubMed Central  Google Scholar 

  68. Conceicao-Neto N, Deboutte W, Dierckx T, et al. Low eukaryotic viral richness is associated with faecal microbiota transplantation success in patients with UC. Gut. 2018;67:1558–1559.

    PubMed  Google Scholar 

  69. Gogokhia L, Buhrke K, Bell R, et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe. 2019;25:285–299.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ding X, Li Q, Li P, et al. Long-term safety and efficacy of fecal microbiota transplant in active ulcerative colitis. Drug Saf. 2019;42:869–880.

    CAS  PubMed  Google Scholar 

  71. Sood A, Mahajan R, Singh A, et al. Role of fecal microbiota transplantation for maintenance of remission in patients with ulcerative colitis: a pilot study. J Crohns Colitis. 2019;13:1311–1317.

    PubMed  Google Scholar 

  72. Herfarth H, Barnes EL, Long MD, et al. Combined endoscopic and oral fecal microbiota transplantation in patients with antibiotic-dependent pouchitis: low clinical efficacy due to low donor microbial engraftment. Inflamm Intest Dis. 2019;4:1–6.

    PubMed  PubMed Central  Google Scholar 

  73. De Palma G, Lynch MD, Lu J, et al. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci Transl Med. 2017;9:eaaf6397.

    PubMed  Google Scholar 

  74. Halkjaer SI, Christensen AH, Lo BZS, et al. Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: results from a randomised, double-blind placebo-controlled study. Gut. 2018;67:2107–2115.

    CAS  PubMed  Google Scholar 

  75. Huang HL, Chen HT, Luo QL, et al. Relief of irritable bowel syndrome by fecal microbiota transplantation is associated with changes in diversity and composition of the gut microbiota. J Dig Dis. 2019;20:401–408.

    CAS  PubMed  Google Scholar 

  76. Johnsen PH, Hilpusch F, Cavanagh JP, et al. Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomised, placebo-controlled, parallel-group, single-centre trial. Lancet Gastroenterol Hepatol. 2018;3:17–24.

    PubMed  Google Scholar 

  77. Mazzawi T, Lied GA, Sangnes DA, et al. The kinetics of gut microbial community composition in patients with irritable bowel syndrome following fecal microbiota transplantation. PLoS ONE. 2018;13:e0194904.

    PubMed  PubMed Central  Google Scholar 

  78. Xu D, Chen VL, Steiner CA, et al. Efficacy of fecal microbiota transplantation in irritable bowel syndrome: a systematic review and meta-analysis. Am J Gastroenterol. 2019;114:1043–1050.

    PubMed  PubMed Central  Google Scholar 

  79. Ge X, Tian H, Ding C, et al. Fecal microbiota transplantation in combination with soluble dietary fiber for treatment of slow transit constipation: a pilot study. Arch Med Res. 2016;47:236–242.

    PubMed  Google Scholar 

  80. Tian H, Ge X, Nie Y, et al. Fecal microbiota transplantation in patients with slow-transit constipation: a randomized, clinical trial. PLoS ONE. 2017;12:e0171308.

    PubMed  PubMed Central  Google Scholar 

  81. Gu L, Ding C, Tian H, et al. Serial frozen fecal microbiota transplantation in the treatment of chronic intestinal pseudo-obstruction: a preliminary study. J Neurogastroenterol Motil. 2017;23:289–297.

    PubMed  PubMed Central  Google Scholar 

  82. Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214.

    PubMed  Google Scholar 

  83. Alang N, Kelly CR. Weight gain after fecal microbiota transplantation. Open Forum Infect Dis. 2015;2:ofv004.

    PubMed  PubMed Central  Google Scholar 

  84. Fischer M, Kao D, Kassam Z, et al. Stool donor body mass index does not affect recipient weight after a single fecal microbiota transplantation for clostridium difficile infection. Clin Gastroenterol Hepatol. 2018;16:1351–1353.

    PubMed  Google Scholar 

  85. Cai TT, Ye XL, Yong HJ, et al. Fecal microbiota transplantation relieve painful diabetic neuropathy: a case report. Medicine (Baltimore). 2018;97:e13543.

    PubMed Central  Google Scholar 

  86. Wieland A, Frank DN, Harnke B, Bambha K. Systematic review: microbial dysbiosis and nonalcoholic fatty liver disease. Aliment Pharmacol Ther. 2015;42:1051–1063.

    CAS  PubMed  Google Scholar 

  87. Fitriakusumah Y, Lesmana CRA, Bastian WP, et al. The role of small intestinal bacterial overgrowth (SIBO) in non-alcoholic fatty liver disease (NAFLD) patients evaluated using controlled attenuation parameter (CAP) transient elastography (TE): a tertiary referral center experience. BMC Gastroenterol. 2019;19:43.

    PubMed  PubMed Central  Google Scholar 

  88. Rabot S, Membrez M, Bruneau A, et al. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J. 2010;24:4948–4959.

    CAS  PubMed  Google Scholar 

  89. Bajaj JS, Kakiyama G, Savidge T, et al. Antibiotic-associated disruption of microbiota composition and function in cirrhosis is restored by fecal transplant. Hepatology. 2018;68:1549–1558.

    CAS  PubMed  Google Scholar 

  90. Bajaj JS, Kassam Z, Fagan A, et al. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology. 2017;66:1727–1738.

    CAS  PubMed  Google Scholar 

  91. Mehta R, Kabrawala M, Nandwani S, et al. Preliminary experience with single fecal microbiota transplant for treatment of recurrent overt hepatic encephalopathy—a case series. Indian J Gastroenterol. 2018;37:559–562.

    PubMed  Google Scholar 

  92. Philips CA, Phadke N, Ganesan K, Augustine P. Healthy donor faecal transplant for corticosteroid non-responsive severe alcoholic hepatitis. BMJ Case Rep. 2017;2017:bcr-2017.

    Google Scholar 

  93. Biagi E, Zama D, Rampelli S, et al. Early gut microbiota signature of aGvHD in children given allogeneic hematopoietic cell transplantation for hematological disorders. BMC Med Genom. 2019;12:49.

    Google Scholar 

  94. DeFilipp Z, Peled JU, Li S, et al. Third-party fecal microbiota transplantation following allo-HCT reconstitutes microbiome diversity. Blood Adv. 2018;2:745–753.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Taur Y, Coyte K, Schluter J, et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci Transl Med. 2018;10:eaap9489.

    PubMed  PubMed Central  Google Scholar 

  96. Qi X, Li X, Zhao Y, et al. Treating steroid refractory intestinal acute graft-vs.-host disease with fecal microbiota transplantation: a pilot study. Front Immunol. 2018;9:2195.

    PubMed  PubMed Central  Google Scholar 

  97. Wang Y, Wiesnoski DH, Helmink BA, et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat Med. 2018;24:1804–1808.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gu B, Bo GZ, Ke C. Exploration of fecal microbiota transplantation in the treatment of refractory diarrhea after renal transplantation. Transplant Proc. 2018;50:1326–1331.

    CAS  PubMed  Google Scholar 

  99. Tremlett H, Bauer KC, Appel-Cresswell S, Finlay BB, Waubant E. The gut microbiome in human neurological disease: a review. Ann Neurol. 2017;81:369–382.

    PubMed  Google Scholar 

  100. Kim S, Kwon SH, Kam TI, et al. Transneuronal propagation of pathologic alpha-synuclein from the gut to the brain models Parkinson’s disease. Neuron. 2019;103:627–641.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sampson TR, Debelius JW, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 2016;167:1469–1480.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Maini Rekdal V, Bess EN, Bisanz JE, Turnbaugh PJ, Balskus EP. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science. 2019;364:eaau6323.

    PubMed  Google Scholar 

  103. Scheperjans F, Aho V, Pereira PA, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord. 2015;30:350–358.

    PubMed  Google Scholar 

  104. Davido B, Batista R, Michelon H, et al. Is faecal microbiota transplantation an option to eradicate highly drug-resistant enteric bacteria carriage? J Hosp Infect. 2017;95:433–437.

    CAS  PubMed  Google Scholar 

  105. Dinh A, Fessi H, Duran C, et al. Clearance of carbapenem-resistant Enterobacteriaceae vs vancomycin-resistant enterococci carriage after faecal microbiota transplant: a prospective comparative study. J Hosp Infect. 2018;99:481–486.

    CAS  PubMed  Google Scholar 

  106. Singh R, de Groot PF, Geerlings SE, et al. Fecal microbiota transplantation against intestinal colonization by extended spectrum beta-lactamase producing Enterobacteriaceae: a proof of principle study. BMC Res Notes. 2018;11:190.

    PubMed  PubMed Central  Google Scholar 

  107. Sohn KM, Cheon S, Kim YS. Can fecal microbiota transplantation (FMT) eradicate fecal colonization with vancomycin-resistant enterococci (VRE)? Infect Control Hosp Epidemiol. 2016;37:1519–1521.

    PubMed  Google Scholar 

  108. Leung V, Vincent C, Edens TJ, Miller M, Manges AR. Antimicrobial resistance gene acquisition and depletion following fecal microbiota transplantation for recurrent clostridium difficile infection. Clin Infect Dis. 2018;66:456–457.

    CAS  PubMed  Google Scholar 

  109. Millan B, Park H, Hotte N, et al. Fecal microbial transplants reduce antibiotic-resistant genes in patients with recurrent clostridium difficile infection. Clin Infect Dis. 2016;62:1479–1486.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Stalenhoef JE, Terveer EM, Knetsch CW, et al. Fecal microbiota transfer for multidrug-resistant gram-negatives: a clinical success combined with microbiological failure. Open Forum Infect Dis. 2017;4:ofx047.

    PubMed  PubMed Central  Google Scholar 

  111. Battipaglia G, Malard F, Rubio MT, et al. Fecal microbiota transplantation before or after allogeneic hematopoietic transplantation in patients with hematological malignancies carrying multidrug-resistance bacteria. Haematologica. 2019;104:1682–1688.

    PubMed  PubMed Central  Google Scholar 

  112. Allegretti JR, Kassam Z, Carrellas M, et al. Fecal microbiota transplantation in patients with primary sclerosing cholangitis: a pilot clinical trial. Am J Gastroenterol. 2019;114:1071–1079.

    PubMed  Google Scholar 

  113. Gunaltay S, Rademacher L, Hultgren Hornquist E, Bohr J. Clinical and immunologic effects of faecal microbiota transplantation in a patient with collagenous colitis. World J Gastroenterol. 2017;23:1319–1324.

    PubMed  PubMed Central  Google Scholar 

  114. van Beurden YH, van Gils T, van Gils NA, Kassam Z, Mulder CJ, Aparicio-Pages N. Serendipity in refractory celiac disease: full recovery of duodenal villi and clinical symptoms after fecal microbiota transfer. J Gastrointestin Liver Dis. 2016;25:385–388.

    PubMed  Google Scholar 

  115. Rhoades N, Mendoza N, Jankeel A, et al. Altered immunity and microbial dysbiosis in aged individuals with long-term controlled HIV infection. Front Immunol. 2019;10:463.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Vujkovic-Cvijin I, Rutishauser RL, Pao M, et al. Limited engraftment of donor microbiome via one-time fecal microbial transplantation in treated HIV-infected individuals. Gut Microbes. 2017;8:440–450.

    PubMed  PubMed Central  Google Scholar 

  117. Rebello D, Wang E, Yen E, Lio PA, Kelly CR. Hair growth in two alopecia patients after fecal microbiota transplant. ACG Case Rep J. 2017;4:e107.

    PubMed  PubMed Central  Google Scholar 

  118. Li Q, Han Y, Dy ABC, Hagerman RJ. The gut microbiota and autism spectrum disorders. Front Cell Neurosci. 2017;11:120.

    PubMed  PubMed Central  Google Scholar 

  119. Kang Y, Cai Y. Future prospect of faecal microbiota transplantation as a potential therapy in asthma. Allergol Immunopathol (Madr). 2018;46:307–309.

    CAS  PubMed  Google Scholar 

  120. Kragsnaes MS, Kjeldsen J, Horn HC, et al. Efficacy and safety of faecal microbiota transplantation in patients with psoriatic arthritis: protocol for a 6-month, double-blind, randomised, placebo-controlled trial. BMJ Open. 2018;8:e019231.

    PubMed  PubMed Central  Google Scholar 

  121. Kelly CR, Kim AM, Laine L, Wu GD. The AGA’s fecal microbiota transplantation national registry: an important step toward understanding risks and benefits of microbiota therapeutics. Gastroenterology. 2017;152:681–684.

    PubMed  Google Scholar 

  122. Schwartz M, Gluck M, Koon S. Norovirus gastroenteritis after fecal microbiota transplantation for treatment of clostridium difficile infection despite asymptomatic donors and lack of sick contacts. Am J Gastroenterol. 2013;108:1367.

    PubMed  Google Scholar 

  123. Brooks PT, Brakel KA, Bell JA, et al. Transplanted human fecal microbiota enhanced Guillain Barre syndrome autoantibody responses after Campylobacter jejuni infection in C57BL/6 mice. Microbiome. 2017;5:92.

    PubMed  PubMed Central  Google Scholar 

  124. Fischer M, Bittar M, Papa E, Kassam Z, Smith M. Can you cause inflammatory bowel disease with fecal transplantation? A 31-patient case-series of fecal transplantation using stool from a donor who later developed Crohn’s disease. Gut Microbes. 2017;8:205–207.

    PubMed  PubMed Central  Google Scholar 

  125. Qazi T, Amaratunga T, Barnes EL, Fischer M, Kassam Z, Allegretti JR. The risk of inflammatory bowel disease flares after fecal microbiota transplantation: Systematic review and meta-analysis. Gut Microbes. 2017;8:574–588.

    PubMed  PubMed Central  Google Scholar 

  126. Tran V, Phan J, Nulsen B, et al. Severe ileocolonic Crohn’s disease flare associated with fecal microbiota transplantation requiring diverting ileostomy. ACG Case Rep J. 2018;5:e97.

    PubMed  PubMed Central  Google Scholar 

  127. Jakobsson HE, Rodriguez-Pineiro AM, Schutte A, et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 2015;16:164–177.

    CAS  PubMed  Google Scholar 

  128. Yu LC, Wang JT, Wei SC, Ni YH. Host-microbial interactions and regulation of intestinal epithelial barrier function: from physiology to pathology. World J Gastrointest Pathophysiol. 2012;3:27–43.

    PubMed  PubMed Central  Google Scholar 

  129. Fuentes S, Rossen NG, van der Spek MJ, et al. Microbial shifts and signatures of long-term remission in ulcerative colitis after faecal microbiota transplantation. ISME J. 2017;11:1877–1889.

    PubMed  PubMed Central  Google Scholar 

  130. Paramsothy S, Nielsen S, Kamm MA, et al. Specific bacteria and metabolites associated with response to fecal microbiota transplantation in patients with ulcerative colitis. Gastroenterology. 2019;156:1440–1454.

    PubMed  Google Scholar 

  131. Mazzawi T, Hausken T, Hov JR, et al. Clinical response to fecal microbiota transplantation in patients with diarrhea-predominant irritable bowel syndrome is associated with normalization of fecal microbiota composition and short-chain fatty acid levels. Scand J Gastroenterol. 2019;54:690–699.

    CAS  PubMed  Google Scholar 

  132. Tian Z, Liu J, Liao M, et al. Beneficial effects of fecal microbiota transplantation on ulcerative colitis in mice. Dig Dis Sci. 2016;61:2262–2271.

    PubMed  Google Scholar 

  133. Burrello C, Garavaglia F, Cribiu FM, et al. Therapeutic faecal microbiota transplantation controls intestinal inflammation through IL10 secretion by immune cells. Nat Commun. 2018;9:5184.

    PubMed  PubMed Central  Google Scholar 

  134. Kakihana K, Fujioka Y, Suda W, et al. Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut. Blood. 2016;128:2083–2088.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Jacob V, Crawford C, Cohen-Mekelburg S, et al. Single delivery of high-diversity fecal microbiota preparation by colonoscopy is safe and effective in increasing microbial diversity in active ulcerative colitis. Inflamm Bowel Dis. 2017;23:903–911.

    PubMed  Google Scholar 

  136. Vaughn BP, Vatanen T, Allegretti JR, et al. Increased intestinal microbial diversity following fecal microbiota transplant for active Crohn’s disease. Inflamm Bowel Dis. 2016;22:2182–2190.

    PubMed  Google Scholar 

  137. Kim M, Galan C, Hill AA, et al. Critical role for the microbiota in CX3CR1(+) intestinal mononuclear phagocyte regulation of intestinal T cell responses. Immunity. 2018;49:151–163.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Okai S, Usui F, Yokota S, et al. High-affinity monoclonal IgA regulates gut microbiota and prevents colitis in mice. Nat Microbiol. 2016;1:16103.

    CAS  PubMed  Google Scholar 

  139. Okai S, Usui F, Ohta M, et al. Intestinal IgA as a modulator of the gut microbiota. Gut Microbes. 2017;8:486–492.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Cheng CS, Wei HK, Wang P, et al. Early intervention with faecal microbiota transplantation: an effective means to improve growth performance and the intestinal development of suckling piglets. Animal. 2019;13:533–541.

    CAS  PubMed  Google Scholar 

  141. Kazerouni A, Wein LM. Exploring the efficacy of pooled stools in fecal microbiota transplantation for microbiota-associated chronic diseases. PLoS ONE. 2017;12:e0163956.

    PubMed  PubMed Central  Google Scholar 

  142. Olesen SW, Gurry T, Alm EJ. Designing fecal microbiota transplant trials that account for differences in donor stool efficacy. Stat Methods Med Res. 2018;27:2906–2917.

    PubMed  Google Scholar 

  143. Moayyedi P, Surette MG, Kim PT, et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology. 2015;149:102–109.

    PubMed  Google Scholar 

  144. Paramsothy S, Kamm MA, Kaakoush NO, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet. 2017;389:1218–1228.

    PubMed  Google Scholar 

  145. Costello SP, Hughes PA, Waters O, et al. Effect of Fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. JAMA. 2019;321:156–164.

    PubMed  PubMed Central  Google Scholar 

  146. Cao Y, Zhang B, Wu Y, Wang Q, Wang J, Shen F. The value of fecal microbiota transplantation in the treatment of ulcerative colitis patients: a systematic review and meta-analysis. Gastroenterol Res Pract. 2018;2018:5480961.

    PubMed  PubMed Central  Google Scholar 

  147. Ishikawa D, Sasaki T, Takahashi M, et al. The microbial composition of bacteroidetes species in ulcerative colitis is effectively improved by combination therapy with fecal microbiota transplantation and antibiotics. Inflamm Bowel Dis. 2018;24:2590–2598.

    PubMed  Google Scholar 

  148. Rossen NG, Fuentes S, van der Spek MJ, et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology. 2015;149:110–118.

    PubMed  Google Scholar 

  149. Imdad A, Nicholson MR, Tanner-Smith EE, et al. Fecal transplantation for treatment of inflammatory bowel disease. Cochrane Database Syst Rev. 2018;11:CD012774.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert L. DuPont.

Ethics declarations

Conflict of interest

HLD and Z-DJ have applied for a patent for their FMT product and HLD has received a grant from Rebiotix to study their FMT product.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DuPont, H.L., Jiang, ZD., DuPont, A.W. et al. Abnormal Intestinal Microbiome in Medical Disorders and Potential Reversibility by Fecal Microbiota Transplantation. Dig Dis Sci 65, 741–756 (2020). https://doi.org/10.1007/s10620-020-06102-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06102-y

Keywords

Navigation