Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hyperactive PI3Kδ predisposes naive T cells to activation via aerobic glycolysis programs

Abstract

Activated phosphoinositide 3-kinase δ syndrome (APDS) is an autosomal-dominant combined immunodeficiency disorder resulting from pathogenic gain-of-function (GOF) mutations in the PIK3CD gene. Patients with APDS display abnormal T cell homeostasis. However, the mechanisms by which PIK3CD GOF contributes to this feature remain unknown. Here, with a cohort of children with PIK3CD GOF mutations from multiple regions of China and a corresponding CRISPR/Cas9 gene-edited mouse model, we reported that hyperactive PI3Kδ disrupted TNaive cell homeostasis in the periphery by intrinsically promoting the growth, proliferation, and activation of TNaive cells. Our results showed that PIK3CD GOF resulted in loss of the quiescence-associated gene expression profile in naive T cells and promoted naive T cells to overgrow, hyperproliferate and acquire an activated functional status. Naive PIK3CD GOF T cells exhibited an enhanced glycolytic capacity and reduced mitochondrial respiration in the resting or activated state. Blocking glycolysis abrogated the abnormal splenic T cell pool and reversed the overactivated phenotype induced by PIK3CD GOF in vivo and in vitro. These results suggest that enhanced aerobic glycolysis is required for PIK3CD GOF-induced overactivation of naive T cells and provide a potential therapeutic approach for targeting glycolysis to treat patients with APDS as well as other immune disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The RNA-seq data have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus (GEO) with the accession number GSE 134322.

References

  1. Surh, C. D. & Sprent, J. Homeostasis of naive and memory T cells. Immunity 29, 848–862 (2008).

    CAS  PubMed  Google Scholar 

  2. Takada, K. & Jameson, S. C. Naive T cell homeostasis: from awareness of space to a sense of place. Nat. Rev. Immunol. 9, 823–832 (2009).

    CAS  PubMed  Google Scholar 

  3. Silva, S. L. & Sousa, A. E. Establishment and maintenance of the human naïve CD4+ T-cell compartment. Front Pediatr. 4, 1–10 (2016).

    Google Scholar 

  4. Angulo, I. et al. Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage. Science 342, 866–871 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lucas, C. L. et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat. Immunol. 15, 88–97 (2014).

    CAS  PubMed  Google Scholar 

  6. Elgizouli, M. et al. Activating PI3Kδ mutations in a cohort of 669 patients with primary immunodeficiency. Clin. Exp. Immunol. 183, 221–229 (2016).

    CAS  PubMed  Google Scholar 

  7. Coulter, T. I. et al. Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: a large patient cohort study. J. Allergy Clin. Immunol. 139, 597–606.e4 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nunes-Santos, C. J., Uzel, G. & Rosenzweig, S. D. PI3K pathway defects leading to immunodeficiency and immune dysregulation. J. Allergy Clin. Immunol. 143, 1676–1687 (2019).

    CAS  PubMed  Google Scholar 

  9. Bier, J. et al. Activating mutations in PIK3CD disrupt the differentiation and function of human and murine CD4+ T cells. J. Allergy Clin. Immunol. 144, 236–253 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Edwards, E. S. J. et al. Activating PIK3CD mutations impair human cytotoxic lymphocyte differentiation and function and EBV immunity. J. Allergy Clin. Immunol. 143, 276–291.e6 (2019).

    CAS  PubMed  Google Scholar 

  11. Vanhaesebroeck, B. et al. p110delta, a novel phosphoinositide 3-kinase in leukocytes. Proc. Natl Acad. Sci. USA 94, 4330–4335 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Okkenhaug, K. Signaling by the phosphoinositide 3-kinase family in immune cells. Annu Rev. Immunol. 31, 675–704 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lucas, C. L., Chandra, A., Nejentsev, S., Condliffe, A. M. & Okkenhaug, K. PI3Kδ and primary immunodeficiencies. Nat. Rev. Immunol. 16, 702–714 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Webb, L. M. C., Vigorito, E., Wymann, M. P., Hirsch, E. & Turner, M. Cutting edge: T Cell development requires the combined activities of the p110γ and and p110δ catalytic catalytic isoforms of phosphatidylinositol 3-kinase. J. Immunol. 175, 2783–2787 (2005).

    CAS  PubMed  Google Scholar 

  15. Clayton, E. et al. A crucial role for the p110delta subunit of phosphatidylinositol 3-kinase in B cell development and activation. J. Exp. Med 196, 753–763 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Okkenhaug, K. Impaired B and T Cell antigen receptor signaling in p110delta PI3-kinase mutant mice. Science 297, 1031–1034 (2002).

    CAS  PubMed  Google Scholar 

  17. Jou, S.-T. et al. Essential, nonredundant role for the phosphoinositide 3-kinase p110delta in signaling by the B-cell receptor complex. Mol. Cell Biol. 22, 8580–8591 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Okkenhaug, K. et al. The p110delta isoform of phosphoinositide 3-kinase controls clonal expansion and differentiation of Th cells. J. Immunol. 177, 5122–5128 (2006).

    CAS  PubMed  Google Scholar 

  19. Rolf, J. et al. Phosphoinositide 3-kinase activity in T cells regulates the magnitude of the germinal center reaction. J. Immunol. 185, 4042–4052 (2010).

    CAS  PubMed  Google Scholar 

  20. Pearce, V. Q., Bouabe, H., MacQueen, A. R., Carbonaro, V. & Okkenhaug, K. PI3Kδ regulates the magnitude of CD8+T cell responses after challenge with listeria monocytogenes. J. Immunol. 195, 3206–3217 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, D. & Uzonna, J. E. The p110delta Isoform of phosphatidylinositol 3-kinase controls the quality of secondary anti-leishmania immunity by regulating expansion and effector function of memory T cell subsets. J. Immunol. 184, 3098–3105 (2010).

    CAS  PubMed  Google Scholar 

  22. Gracias, D. T. et al. Phosphoinositide 3-Kinases p110δ isoform regulates CD8+ T cell responses during acute viral and intracellular bacterial infections. J. Immunol. 196, 1186–1198 (2016).

    CAS  PubMed  Google Scholar 

  23. Liu, D. et al. The p110 isoform of phosphatidylinositol 3-kinase controls susceptibility to leishmania major by regulating expansion and tissue homing of regulatory T cells. J. Immunol. 183, 1921–1933 (2009).

    CAS  PubMed  Google Scholar 

  24. Jarmin, S. J. et al. T cell receptor-induced phosphoinositide-3-kinase p110δ activity is required for T cell localization to antigenic tissue in mice. J. Clin. Invest 118, 1154–1164 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sinclair, L. V. et al. Phosphoinositide 3-kinase (PI3K) and nutrient sensing mTOR (mammalian target of rapamycin) pathways control T lymphocyte trafficking. Nat. Immunol. 9, 513–521 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Uehara, M. et al. Regulation of T cell alloimmunity by PI3Kγ and PI3Kδ. Nat. Commun. 8, 951 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Soond, D. R. et al. PI3K p110delta regulates T-cell cytokine production during primary and secondary immune responses in mice and humans. Blood 115, 2203–2213 (2010).

    CAS  PubMed  Google Scholar 

  28. Nashed, B. F. et al. Role of the phosphoinositide 3-kinase p110δ in generation of type 2 cytokine responses and allergic airway inflammation. Eur. J. Immunol. 37, 416–424 (2007).

    CAS  PubMed  Google Scholar 

  29. Zhang, K., Husami, A., Marsh, R. & Jordan, M. B. Identification of a phosphoinositide 3-kinase (PI-3K) P110delta(PIK3CD) deficient individual. J. Clin. Immunol. 33, 673–674 (2013).

    Google Scholar 

  30. Sharfe, N. et al. Dual loss of p110δ PI3-kinase and SKAP (KNSTRN) expression leads to combined immunodeficiency and multisystem syndromic features. J. Allergy Clin. Immunol. 142, 618–629 (2018).

    CAS  PubMed  Google Scholar 

  31. Sogkas, G. et al. Primary immunodeficiency disorder caused by phosphoinositide 3–kinase δ deficiency. J. Allergy Clin. Immunol. 142, 1650–1653.e2 (2018).

    PubMed  Google Scholar 

  32. Cohen, S. B. et al. Human primary immunodeficiency caused by expression of a kinase-dead p110δ mutant. J. Allergy Clin. Immunol. 143, 797–799.e2 (2019).

    CAS  PubMed  Google Scholar 

  33. MacIver, N. J., Michalek, R. D. & Rathmell, J. C. Metabolic regulation of T lymphocytes. Annu Rev. Immunol. 31, 259–283 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Buck, M. D., O’Sullivan, D. & Pearce, E. L. T cell metabolism drives immunity. J. Exp. Med 212, 1345–1360 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Geltink, R. I. K., Kyle, R. L. & Pearce, E. L. Unraveling the complex interplay between T cell metabolism and function. Annu Rev. Immunol. 36, 461–488 (2018).

    CAS  PubMed  Google Scholar 

  36. Preite, S. et al. Hyperactivated PI3Kδ promotes self and commensal reactivity at the expense of optimal humoral immunity. Nat. Immunol. 19, 986–1000 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bi, L., Okabe, I., Bernard, D. J., Wynshaw-Boris, A. & Nussbaum, R. L. Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110α subunit of phosphoinositide 3-kinase. J. Biol. Chem. 274, 10963–10968 (1999).

    CAS  PubMed  Google Scholar 

  38. Fruman, D. A. et al. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science 283, 393–397 (1999).

    CAS  PubMed  Google Scholar 

  39. Lu-Kuo, J. M., Fruman, D. A., Joyal, D. M., Cantley, L. C. & Katz, H. R. Impaired Kit- but not FcεRI-initiated mast cell activation in the absence of phosphoinositide 3-kinase p85α gene products. J. Biol. Chem. 275, 6022–6029 (2000).

    CAS  PubMed  Google Scholar 

  40. Dornan, G. L. et al. Conformational disruption of PI3Kδ regulation by immunodeficiency mutations in PIK3CD and PIK3R1. Proc. Natl Acad. Sci. USA 114, 1982–1987 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Stark, A. K. et al. PI3Kδ hyper-activation promotes development of B cells that exacerbate Streptococcus pneumoniae infection in an antibody-independent manner. Nat. Commun. 9, 3174 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. Daley, S. R. et al. Rasgrp1 mutation increases naive T-cell CD44 expression and drives mTOR-dependent accumulation of Helios+ T cells and autoantibodies. Elife 2, e01020 (2013).

    PubMed  PubMed Central  Google Scholar 

  43. Wray-Dutra, M. N. et al. Activated PIK3CD drives innate B cell expansion yet limits B cell–intrinsic immune responses. J. Exp. Med. 215, 2485–2496 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Avery, D. T. et al. Germline-activating mutations in PIK3CD compromise B cell development and function. J. Exp. Med. 215, 2073–2095 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Preite, S., Gomez-Rodriguez, J., Cannons, J. L. & Schwartzberg, P. L. T and B-cell signaling in activated PI3K delta syndrome: From immunodeficiency to autoimmunity. Immunol. Rev. 291, 154–173 (2019).

    CAS  PubMed  Google Scholar 

  46. Ouyang, W., Beckett, O., Flavell, R. A. & Li, M. O. An essential role of the forkhead-Box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity 30, 358–371 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kerdiles, Y. M. et al. Foxo1 links homing and survival of naive T cells by regulating L- selectin, CCR7 and interleukin 7 receptor. Nat. Immunol. 10, 176–184 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Newton, R. H. et al. Maintenance of CD4 T cell fitness through regulation of Foxo1. Nat. Immunol. 19, 838–848 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cannons, J. L., Preite, S., Kapnick, S. M., Uzel, G. & Schwartzberg, P. L. Genetic defects in phosphoinositide 3-kinase δ Influence CD8+ T Cell survival, differentiation, and function. Front Immunol. 9, 1758 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Carpier, J.-M. & Lucas, C. L. Epstein–Barr Virus susceptibility in activated PI3Kδ syndrome (APDS) immunodeficiency. Front Immunol. 8, 2005 (2018).

    PubMed  PubMed Central  Google Scholar 

  51. Wentink, M. W. J. et al. Exhaustion of the CD8+ T cell compartment in patients with mutations in phosphoinositide 3-kinase delta. Front Immunol. 9, 446 (2018).

    PubMed  PubMed Central  Google Scholar 

  52. Nunes-Santos, C. J. et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. J. Allergy Clin. Immunol. 143, 1676–1687 (2014).

    Google Scholar 

  53. Imai, Y. et al. Crosstalk between the Rb Pathway and AKT signaling forms a quiescence-senescence switch. Cell Rep. 7, 194–207 (2014).

    CAS  PubMed  Google Scholar 

  54. Astle, M. V. et al. AKT induces senescence in human cells via mTORC1 and p53 in the absence of DNA damage: implications for targeting mTOR during malignancy. Oncogene 31, 1949–1962 (2012).

    CAS  PubMed  Google Scholar 

  55. Zeng, H. et al. mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T cell differentiation. Immunity 45, 540–554 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zeng, H. & Chi, H. mTOR signaling in the differentiation and function of regulatory and effector T cells. Curr. Opin. Immunol. 46, 103–111 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Maccari, M. E. et al. Disease evolution and response to rapamycin in activated phosphoinositide 3-kinase δ syndrome: The european society for immunodeficiencies-activated phosphoinositide 3-kinase δ syndrome registry. Front Immunol. 9, 543 (2018).

    PubMed  PubMed Central  Google Scholar 

  58. Coulter, T. I. & Cant, A. J. The treatment of activated PI3Kδ syndrome. Front Immunol. 9, 2043 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. Michalovich, D. & Nejentsev, S. Activated PI3 kinase delta syndrome: from genetics to therapy. Front Immunol. 9, 369 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Rao, V. K. et al. Effective “activated PI3Kδ syndrome”–targeted therapy with the PI3Kδ inhibitor leniolisib. Blood 130, 2307–2316 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Compagno, M. et al. Phosphatidylinositol 3-kinase δ blockade increases genomic instability in B cells. Nature 542, 489–493 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yin, Y. et al. Normalization of CD4+ T cell metabolism reverses lupus. Sci. Transl. Med 7, 274ra18 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Choi, S. C. et al. Inhibition of glucose metabolism selectively targets autoreactive follicular helper T cells. Nat. Commun. 9, 4369 (2018).

    PubMed  PubMed Central  Google Scholar 

  64. Lee, C.-F. et al. Preventing allograft rejection by targeting immune metabolism. Cell Rep. 13, 760–770 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Abboud, G. et al. Inhibition of glycolysis reduces disease severity in an autoimmune model of rheumatoid arthritis. Front Immunol. 9, 1973 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest 125, 194–207 (2015).

    PubMed  Google Scholar 

  67. Ding, Y. et al. Reference values for peripheral blood lymphocyte subsets of healthy children in China. J. Allergy Clin. Immunol. 142, 970–973.e8 (2018).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Science Foundation of China (81974255) and the Public Welfare Scientific Research Project of China (201402012) to X.Z.

Author information

Authors and Affiliations

Authors

Contributions

Y.J., Q.Y., and Y.W. designed and performed experiments and analyzed the data; Y.J. wrote the initial paper; Q.Y., Y.W., X.C., and W.T. recruited and managed patients; W.L., X.C., T.X., Z.T., M.F., L.Z., N.T., and L.Z. performed experiments; W.S. contributed to scientific discussion and data interpretation and reviewed and revised the paper. X.Z. designed the research, supervised the study, and reviewed and revised the paper.

Corresponding author

Correspondence to Xiaodong Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Yang, Q., Wang, Y. et al. Hyperactive PI3Kδ predisposes naive T cells to activation via aerobic glycolysis programs. Cell Mol Immunol 18, 1783–1797 (2021). https://doi.org/10.1038/s41423-020-0379-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-0379-x

Keywords

This article is cited by

Search

Quick links