Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acute myeloid leukemia

Simultaneous kinase inhibition with ibrutinib and BCL2 inhibition with venetoclax offers a therapeutic strategy for acute myeloid leukemia

Abstract

Acute myeloid leukemia (AML) results from the enhanced proliferation and impaired differentiation of hematopoietic stem and progenitor cells. Using an ex vivo functional screening assay, we identified that the combination of the BTK inhibitor ibrutinib and BCL2 inhibitor venetoclax (IBR + VEN), currently in clinical trials for chronic lymphocytic leukemia (CLL), demonstrated enhanced efficacy on primary AML patient specimens, AML cell lines, and in a mouse xenograft model of AML. Expanded analyses among a large cohort of hematologic malignancies (n = 651 patients) revealed that IBR + VEN sensitivity associated with selected genetic and phenotypic features in both CLL and AML specimens. Among AML samples, 11q23 MLL rearrangements were highly sensitive to IBR + VEN. Analysis of differentially expressed genes with respect to IBR + VEN sensitivity indicated pathways preferentially enriched in patient samples with reduced ex vivo sensitivity, including IL-10 signaling. These findings suggest that IBR + VEN may represent an effective therapeutic option for patients with AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sensitivity of Ibrutinib + Venetoclax combination on 651 unique leukemia patient samples.
Fig. 2: Ibrutinib + Venetoclax combination is potent and synergistic in AML cells.
Fig. 3: Select clinical and genetic features in CLL samples associate with differential sensitivity ex vivo to Ibrutinib + Venetoclax.
Fig. 4: Genetic abnormalities in AML samples associate with differential sensitivity ex vivo to Ibrutinib + Venetoclax.
Fig. 5: Patterns of differentially expressed genes associate with sensitivity or resistance to IBR + VEN.
Fig. 6: Pathway analysis indicates that IL-10 signaling is enriched in IBR + VEN resistant samples.

Similar content being viewed by others

References

  1. Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373:1136–52.

    Article  PubMed  CAS  Google Scholar 

  2. Medeiros BC, Satram-Hoang S, Hurst D, Hoang KQ, Momin F, Reyes C. Big data analysis of treatment patterns and outcomes among elderly acute myeloid leukemia patients in the United States. Ann Hematol. 2015;94:1127–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Konopleva M, Pollyea DA, Potluri J, Chyla B, Hogdal L, Busman T, et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016;6:1106–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. DiNardo CD, Pratz K, Pullarkat V, Jonas BA, Arellano M, Becker PS, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133:7–17.

  5. Pollyea DA, Stevens BM, Jones CL, Winters A, Pei S, Minhajuddin M, et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat Med. 2018;24:1859–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hillmen P, Rawstron A, Brock K, Vicente SM, Yates F, Bishop R, et al. Ibrutinib plus venetoclax in relapsed/refractory CLL: results of teh bloodwise TAP clarity study. Blood. 2018;132:182.

    Article  Google Scholar 

  7. Jain N, Keating MJ, Thompson PA, Ferrajoli A, Burger JA, Borthakur G, et al. Combined ibrutinib and venetoclax in patients with treatment-naive high-risk chronic lympocytic leukemia. Blood. 2018;132:696.

    Article  Google Scholar 

  8. Rogers KA, Huang Y, Ruppert AS, Awan FT, Heerema NA, Hoffman C, et al. Phase 1b study of obinutuzumab, ibrutinib, and venetoclax in relapsed and refractory chronic lymphocytic leukemia. Blood. 2018;132:1568–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tam CS, Anderson MA, Pott C, Agarwal R, Handunnetti S, Hicks RJ, et al. Ibrutinib plus venetoclax for the treatment of mantle-cell lymphoma. N Engl J Med. 2018;378:1211–23.

    Article  CAS  PubMed  Google Scholar 

  10. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369:32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chiron D, Dousset C, Brosseau C, Touzeau C, Maiga S, Moreau P, et al. Biological rational for sequential targeting of Bruton tyrosine kinase and Bcl-2 to overcome CD40-induced ABT-199 resistance in mantle cell lymphoma. Oncotarget. 2015;6:8750–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cervantes-Gomez F, Lamothe B, Woyach JA, Wierda WG, Keating MJ, Balakrishnan K, et al. Pharmacological and protein profiling suggests venetoclax (ABT-199) as optimal partner with ibrutinib in chronic lymphocytic leukemia. Clin Cancer Res. 2015;21:3705–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deng J, Isik E, Fernandes SM, Brown JR, Letai A, Davids MS. Bruton’s tyrosine kinase inhibition increases BCL-2 dependence and enhances sensitivity to venetoclax in chronic lymphocytic leukemia. Leukemia. 2017;31:2075–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Friedman AA, Letai A, Fisher DE, Flaherty KT. Precision medicine for cancer with next-generation functional diagnostics. Nat Rev Cancer. 2015;15:747–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562:526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tyner JW, Yang WF, Bankhead A 3rd, Fan G, Fletcher LB, Bryant J, et al. Kinase pathway dependence in primary human leukemias determined by rapid inhibitor screening. Cancer Res. 2013;73:285–96.

    Article  CAS  PubMed  Google Scholar 

  17. Altshuler B. Modeling of dose-response relationships. Environ Health Perspect. 1981;42:23–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hansen KD, Irizarry RA, Wu Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics. 2012;13:204–16.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 2007;3:1724–35.

    Article  CAS  PubMed  Google Scholar 

  21. Buja A, Eyuboglu N. Remarks on parallel analysis. Multivar Behav Res. 1992;27:509–40.

    Article  CAS  Google Scholar 

  22. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.

    Google Scholar 

  23. Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B, et al. Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res. 2009;37:D619–22.

    Article  CAS  PubMed  Google Scholar 

  24. Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 2014;42:D472–7.

    Article  CAS  PubMed  Google Scholar 

  25. Sales G, Calura E, Cavalieri D, Romualdi C. graphite—a Bioconductor package to convert pathway topology to gene network. BMC Bioinforma. 2012;13:20.

    Article  Google Scholar 

  26. Ibrahim MA, Jassim S, Cawthorne MA, Langlands K. A topology-based score for pathway enrichment. J Comput Biol. 2012;19:563–73.

    Article  PubMed  CAS  Google Scholar 

  27. Ihnatova I, Budinska E, Geistlinger L. ToPASeq: Topology-based pathway analysis of RNA-seq data. R package version 1.20.0. 2019.

  28. Hochberg Y, A sharper Bonferroni procedure for multiple tests of significance. Biometrika. 1988;75:800.

    Article  Google Scholar 

  29. Yadav B, Wennerberg K, Aittokallio T, Tang J. Searching for drug synergy in complex dose-response landscapes using an interaction potency model. Comput Struct Biotechnol J. 2015;13:504–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang HW,B, Bottomly D, Kurtz SE, Eide CA, Damnernsawad A, Romine K, et al. Biomarkers predicting venetoclax sensitivity and strategies for venetoclax combination treatment. Blood. 2018;132:175.

    Article  Google Scholar 

  31. Bisaillon R, Moison C, Thiollier C, Krosl J, Bordeleau ME, Lehnertz B, et al. Genetic characterization of ABT-199 sensitivity in human AML. Leukemia. 2020;34:63–74.

    Article  PubMed  Google Scholar 

  32. Pan Z, Scheerens H, Li SJ, Schultz BE, Sprengeler PA, Burrill LC, et al. Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase. ChemMedChem. 2007;2:58–61.

    Article  CAS  PubMed  Google Scholar 

  33. Jayappa KD, Portell CA, Gordon VL, Capaldo BJ, Bekiranov S, Axelrod MJ, et al. Microenvironmental agonists generate de novo phenotypic resistance to combined ibrutinib plus venetoclax in CLL and MCL. Blood Adv. 2017;1:933–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Axelrod M, Ou Z, Brett LK, Zhang L, Lopez ER, Tamayo AT, et al. Combinatorial drug screening identifies synergistic co-targeting of Bruton’s tyrosine kinase and the proteasome in mantle cell lymphoma. Leukemia. 2014;28:407–10.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao X, Bodo J, Sun D, Durkin L, Lin J, Smith MR, et al. Combination of ibrutinib with ABT-199: synergistic effects on proliferation inhibition and apoptosis in mantle cell lymphoma cells through perturbation of BTK, AKT and BCL2 pathways. Br J Haematol. 2015;168:765–8.

    Article  CAS  PubMed  Google Scholar 

  36. Scheers E, Leclercq L, de Jong J, Bode N, Bockx M, Laenen A, et al. Absorption, metabolism, and excretion of oral (1)(4)C radiolabeled ibrutinib: an open-label, phase I, single-dose study in healthy men. Drug Metab Dispos. 2015;43:289–97.

    Article  PubMed  CAS  Google Scholar 

  37. Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, Gerecitano JF, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374:311–22.

    Article  CAS  PubMed  Google Scholar 

  38. DiNardo CD, Pratz K, Pullarkat V, Jonas BA, Arellano M, Becker PS, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133:7–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lo-Coco F, Orlando SM, Platzbecker U. Treatment of acute promyelocytic leukemia. N Engl J Med. 2013;369:1472.

    Article  CAS  PubMed  Google Scholar 

  40. Rushworth SA, Murray MY, Zaitseva L, Bowles KM, MacEwan DJ. Identification of Bruton’s tyrosine kinase as a therapeutic target in acute myeloid leukemia. Blood. 2014;123:1229–38.

    Article  CAS  PubMed  Google Scholar 

  41. Oellerich T, Mohr S, Corso J, Beck J, Dobele C, Braun H, et al. FLT3-ITD and TLR9 use Bruton tyrosine kinase to activate distinct transcriptional programs mediating AML cell survival and proliferation. Blood. 2015;125:1936–47.

    Article  CAS  PubMed  Google Scholar 

  42. Gutierrez A, Kentsis A. Acute myeloid/T-lymphoblastic leukaemia (AMTL): a distinct category of acute leukaemias with common pathogenesis in need of improved therapy. Br J Haematol. 2018;180:919–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Berglof A, Hamasy A, Meinke S, Palma M, Krstic A, Mansson R, et al. Targets for ibrutinib beyond B cell malignancies. Scand J Immunol. 2015;82:208–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA. 2010;107:13075–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Suzuki N, Nara K, Suzuki T. Skewed Th1 responses caused by excessive expression of Txk, a member of the Tec family of tyrosine kinases, in patients with Behcet’s disease. Clin Med Res. 2006;4:147–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vogler M. BCL2A1: the underdog in the BCL2 family. Cell Death Differ. 2012;19:67–74.

    Article  CAS  PubMed  Google Scholar 

  47. Vogler M, Butterworth M, Majid A, Walewska RJ, Sun XM, Dyer MJ, et al. Concurrent up-regulation of BCL-XL and BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia. Blood. 2009;113:4403–13.

    Article  CAS  PubMed  Google Scholar 

  48. Yecies D, Carlson NE, Deng J, Letai A. Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1. Blood. 2010;115:3304–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Puthier D, Derenne S, Barille S, Moreau P, Harousseau JL, Bataille R, et al. Mcl-1 and Bcl-xL are co-regulated by IL-6 in human myeloma cells. Br J Haematol. 1999;107:392–5.

    Article  CAS  PubMed  Google Scholar 

  50. Gupta VA, Matulis SM, Conage-Pough JE, Nooka AK, Kaufman JL, Lonial S, et al. Bone marrow microenvironment-derived signals induce Mcl-1 dependence in multiple myeloma. Blood. 2017;129:1969–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. He L, Kulesskiy E, Saarela J, Turunen L, Wennerberg K, Aittokallio T, et al. Methods for High-throughput Drug Combination Screening and Synergy Scoring. In: von Stechow L, editor. Cancer Systems Biology: Methods and Protocols. New York, NY: Springer New York. P351-398. 2018.

Download references

Acknowledgements

Supported by grants from the National Cancer Institute (1U01CA217862, 1U54CA224019, 3P30CA069533). JWT received grants from the V Foundation for Cancer Research, the Gabrielle’s Angel Foundation for Cancer Research, and the National Cancer Institute (1R01CA183947). AVD is a Leukemia and Lymphoma Society Scholar in Clinical Research. JWT has received research support from Agios, Aptose, Array, AstraZeneca, Constellation, Genentech, Gilead, Incyte, Janssen, Petra, Seattle Genetics, Syros, Takeda. BJD serves on the advisory boards for Gilead, Aptose, and Blueprint Medicines. BJD is principal investigator or coinvestigator on Novartis and BMS clinical trials. His institution, OHSU, has contracts with these companies to pay for patient costs, nurse and data manager salaries, and institutional overhead. He does not derive salary, nor does his laboratory receive funds from these contracts. The authors certify that the drugs tested in this study were chosen independently and without input from any of our industry partners. AVD received research support from Gilead Sciences, Genentech, Verastem Oncology, Bayer Oncology, Takeda Oncology, Bristol-Myers Squibb, MEI, Aptose Bioscences, AstraZeneca; honoraria and consulting fees from Abbvie, Pharmacyclics, Gilead Sciences, Verastem Oncology, TG Therapeutics, Celgene, Teva Oncology, AstraZeneca, Curis, Seattle Genetics, not relevant to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Tyner.

Ethics declarations

Conflict of interest

This manuscript contains original research, has not been previously published, and is not under consideration for publication elsewhere. AVD has received commercial research grants from Gilead Sciences, Verastem, Takeda, AstraZeneca, and Verastem Oncology, and is a consultant/advisory board member for AbbVie, AstraZeneca, Genentech, Verastem Oncology, Seattle Genetics, TG Therapeutics, Curis, Celgene, Teva Oncology, and Gilead Sciences. BJD serves on the board of directors of Amgen, Burroughs Wellcome Fund, and CureOne; reports receiving other commercial research support from Novartis, Bristol-Myers Squibb, and Pfizer (institutional funding—PI or coinvestigator on clinical trials funded via contract with OHSU); has ownership interest (including stock, patents, etc.) in Amgen, Blueprint Medicines, MolecularMD (inactive—acquired by ICON Laboratories), GRAIL, Patent 6958335 (exclusively licensed to Novartis), Henry Stewart Talks, Merck via Dana-Farber Cancer Institute (royalty payments); is a consultant/advisory board member for Aileron Therapeutics, ALLCRON, Third Coast Therapeutics, Monojul (inactive), Baxalta (inactive), CTI Biopharma (inactive), Aptose, Beta Cat, Blueprint Medicines, Celgene, Cepheid, GRAIL (former), Gilead (former), and Patient True Talk; and is an uncompensated joint steering committee member for Beat AML LLC. JWT has received commercial research grants from Agios, Aptose, Array, AstraZeneca, Constellation, Genentech, Gilead, Incyte, Janssen, Petra, Seattle Genetics, Syros, and Takeda; has received honoraria from the speakers bureaus of Therapeutic Advances in Childhood Leukemia and Hermedicus—Acute Leukemia Forum. No potential conflicts of interest were disclosed by the other authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eide, C.A., Kurtz, S.E., Kaempf, A. et al. Simultaneous kinase inhibition with ibrutinib and BCL2 inhibition with venetoclax offers a therapeutic strategy for acute myeloid leukemia. Leukemia 34, 2342–2353 (2020). https://doi.org/10.1038/s41375-020-0764-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-020-0764-6

This article is cited by

Search

Quick links