Skip to main content
Log in

Solitons and rogue waves of the quartic nonlinear Schrödinger equation by Riemann–Hilbert approach

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We systematically develop a Riemann–Hilbert approach for the quartic nonlinear Schrödinger equation on the line with both zero boundary condition and nonzero boundary conditions at infinity. For zero boundary condition, the associated Riemann–Hilbert problem is related to two cases of scattering data: N simple poles and one Nth-order pole, which allows us to find the exact formulae of soliton solutions. In the case of nonzero boundary conditions and initial data that allow for the presence of discrete spectrum, the pure one-soliton solution and rogue waves are presented. The important advantage of this method is that one can study the long-time asymptotic behavior of the solutions and the infinite order rogue waves based on the associated Riemann–Hilbert problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xie, X.Y., Tian, B., Chai, J., Wu, X.Y., Jiang, Y.: Dark soliton collisions for a fourth-order variable-coefficient nonlinear Schrödinger equation in an inhomogeneous Heisenberg ferromagnetic spin chain or alpha helical protein. Nonlinear Dyn. 86, 131–135 (2016)

    Article  Google Scholar 

  2. Talati, D., Wazwaz, A.M.: Some new integrable systems of two-component fifth-order equations. Nonlinear Dyn. 87, 1111–1120 (2017)

    Article  MathSciNet  Google Scholar 

  3. Talati, D., Wazwaz, A.M.: Some classification of non-commutative integrable systems. Nonlinear Dyn. 88, 1487–1492 (2017)

    Article  MathSciNet  Google Scholar 

  4. Guo, B.L., Liu, N., Wang, Y.F.: A Riemann-Hilbert approach to a new type coupled nonlinear Schrödinger equations. J. Math. Anal. Appl. 459, 145–158 (2018)

    Article  MathSciNet  Google Scholar 

  5. Wazwaz, A.M.: Negative-order integrable modified KdV equations of higher orders. Nonlinear Dyn. 93, 1371–1376 (2018)

    Article  Google Scholar 

  6. Wazwaz, A.M.: Two new integrable fourth-order nonlinear equations: multiple soliton solutions and multiple complex soliton solutions. Nonlinear Dyn. 94, 2655–2663 (2018)

    Article  Google Scholar 

  7. Kaur, L., Wazwaz, A.M.: Painlevé analysis and invariant solutions of generalized fifth-order nonlinear integrable equation. Nonlinear Dyn. 94, 2469–2477 (2018)

    Article  Google Scholar 

  8. Lan, Z.Z., Su, J.J.: Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system. Nonlinear Dyn. 96, 2535–2546 (2019)

    Article  Google Scholar 

  9. Nikolić, S.N., Ashour, O.A., Aleksić, N.B., Belić, M.R., Chin, S.A.: Breathers, solitons and rogue waves of the quintic nonlinear Schrödinger equation on various backgrounds. Nonlinear Dyn. 95, 2855–2865 (2019)

    Article  Google Scholar 

  10. Yang, C.Y., Zhou, Q., Triki, H., Mirzazadeh, M., Ekici, M., Liu, W.J., Biswas, A., Belic, M.: Bright soliton interactions in a \((2+1)\)-dimensional fourth-order variable-coefficient nonlinear Schrödinger equation for the Heisenberg ferromagnetic spin chain. Nonlinear Dyn. 95, 983–994 (2019)

    Article  Google Scholar 

  11. Feng, B.F., Ling, L.M., Takahashi, D.A.: Multi-breather and high-order rogue waves for the nonlinear Schrödinger equation on the elliptic function background. Stud. Appl. Math. 144, 46–101 (2020)

    Article  Google Scholar 

  12. Sasa, N., Satsuma, J.: New-type of soliton solutions for a higher-order nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 60, 409–417 (1991)

    Article  Google Scholar 

  13. Wang, L., Porsezian, K., He, J.S.: Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation. Phys. Rev. E 87, 053202 (2013)

    Article  Google Scholar 

  14. Yang, B., Zhang, W., Zhang, H., Pei, S.: Generalized Darboux transformation and rogue wave solutions for the higher-order dispersive nonlinear Schrödinger equation. Phys. Scr. 88, 065004 (2013)

    Article  Google Scholar 

  15. Yin, H., Tian, B., Zhang, C., Du, X., Zhao, X.: Optical breathers and rogue waves via the modulation instability for a higher-order generalized nonlinear Schrödinger equation in an optical fiber transmission system. Nonlinear Dyn. 97, 843–852 (2019)

    Article  Google Scholar 

  16. Zhang, H., Tian, B., Meng, X., Lü, X., Liu, W.: Conservation laws, soliton solutions and modulational instability for the higher-order dispersive nonlinear Schrödinger equation. Eur. Phys. J. B 72, 233–239 (2009)

    Article  MathSciNet  Google Scholar 

  17. Lakshmanan, M., Porsezian, K., Daniel, M.: Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A 133, 483–488 (1988)

    Article  Google Scholar 

  18. Guo, B.L., Ling, L.M., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 02660 (2012)

    Google Scholar 

  19. Guan, X., Liu, W.J., Zhou, Q., Biswas, A.: Darboux transformation and analytic solutions for a generalized super-NLS-mKdV equation. Nonlinear Dyn. 98, 1491–1500 (2019)

    Article  Google Scholar 

  20. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  21. Wang, X.B., Han, B.: Application of the Riemann-Hilbert method to the vector modified Korteweg-de Vries equation. Nonlinear Dyn. 99, 1363–1377 (2020)

    Article  Google Scholar 

  22. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  23. Guo, D., Tian, S.F., Zhang, T.T., Li, J.: Modulation instability analysis and soliton solutions of an integrable coupled nonlinear Schrödinger system. Nonlinear Dyn. 94, 2749–2761 (2018)

    Article  Google Scholar 

  24. Wazwaz, A.M., El-Tantawy, S.A.: Solving the \((3+1)\)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota’s method. Nonlinear Dyn. 88, 3017–3021 (2017)

    Article  MathSciNet  Google Scholar 

  25. Zhang, H., Wang, Y.: Multi-dark soliton solutions for the higher-order nonlinear Schrödinger equation in optical fibers. Nonlinear Dyn. 91, 1921–1930 (2018)

    Article  Google Scholar 

  26. Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation. Ann. Math 137, 295–368 (1993)

    Article  MathSciNet  Google Scholar 

  27. Borghese, M., Jenkins, R., McLaughlin, K.: Long time asymptotic behavior of the focusing nonlinear Schrödinger equation. Ann. I. H. Poincaré-AN 35, 887–920 (2018)

    Article  Google Scholar 

  28. Biondini, G., Li, S., Mantzavinos, D.: Long-time asymptotics for the focusing nonlinear Schrödinger equation with nonzero boundary conditions in the presence of a discrete spectrum. arXiv:1907.09432 (2019)

  29. Biondini, G., Mantzavinos, D.: Long-time asymptotics for the focusing nonlinear Schrödinger equation with nonzero boundary conditions at infinity and asymptotic stage of modulational instability. Commun. Pure Appl. Math. 70, 2300–2365 (2017)

    Article  Google Scholar 

  30. Bilman, D., Miller, P.: A robust inverse scattering transform for the focusing nonlinear Schrödinger equation. Commun. Pure Appl. Math. 72, 1722–1805 (2019)

    Article  Google Scholar 

  31. Guo, B.L., Tian, L.X., Yan, Z.Y., Ling, L.M., Wang, Y.F.: Rogue Waves. Mathematical Theory and Applications in Physics. De Gruyter, Berlin (2017)

    Book  Google Scholar 

  32. Bilman, D., Ling, L.M., Miller, P.: Extreme superposition: rogue waves of infinite order and the Painlevé-III hierarchy. Duke Math. J. (2020). https://projecteuclid.org/euclid.dmj/1580202167

  33. Bilman, D., Buckingham, R.: Large-order asymptotics for multiple-pole solitons of the focusing nonlinear Schrödinger equation. J. Nonlinear Sci. 29, 2185–2229 (2019)

    Article  MathSciNet  Google Scholar 

  34. Bilman, D., Buckingham, R., Wang, D.S.: Large-order asymptotics for multiple-pole solitons of the focusing nonlinear Schrödinger equation II: far-field behavior. arXiv:1911.04327v1 (2019)

  35. Chen, S.Y., Yan, Z.Y.: The Hirota equation: Darboux transform of the Riemann–Hilbert problem and higher-order rogue waves. Appl. Math. Lett. 95, 65–71 (2019)

    Article  MathSciNet  Google Scholar 

  36. Chen, S.Y., Yan, Z.Y.: The higher-order nonlinear Schrödinger equation with non-zero boundary conditions: robust inverse scattering transform, breathers, and rogons. Phys. Lett. A 383, 125906 (2019)

    Article  MathSciNet  Google Scholar 

  37. Zhang, X., Chen, Y.: Inverse scattering transformation for generalized nonlinear Schrödinger equation. Appl. Math. Lett. 98, 306–313 (2019)

    Article  MathSciNet  Google Scholar 

  38. Zhang, Y.S., Rao, J.G., Cheng, Y., He, J.S.: Riemann–Hilbert method for the Wadati–Konno–Ichikawa equation: \(N\) simple poles and one higher-order pole. Phys. D 399, 173–185 (2019)

    Article  MathSciNet  Google Scholar 

  39. Zhou, X.: The Riemann-Hilbert problem and inverse scattering. SIAM J. Math. Anal. 20, 966–986 (1989)

    Article  MathSciNet  Google Scholar 

  40. Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. B 25, 16–43 (1983)

    Article  Google Scholar 

Download references

Acknowledgements

N. Liu is supported by the China Postdoctoral Science Foundation under Grant Nos. 2019TQ0041 and 2019M660553.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Guo, B. Solitons and rogue waves of the quartic nonlinear Schrödinger equation by Riemann–Hilbert approach. Nonlinear Dyn 100, 629–646 (2020). https://doi.org/10.1007/s11071-020-05521-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05521-w

Keywords

Navigation