Skip to main content
Log in

High-efficiency nonlinear dynamic analysis for joint interfaces with Newton–Raphson iteration process

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear dynamic analysis of the assembled structures involves the complex nonlinearity of the joint interfaces. By combining the multi-harmonic balance method with the Newton–Raphson iteration process, a high-efficiency nonlinear dynamic analysis method is proposed to analyze the steady-state dynamic responses influenced by the hysteresis nonlinearity of the joint interfaces. The proposed method adopts a gradient vector based on the chain derivation of the continuous function to iterate the steady-state dynamic responses instead of the Jacobian matrix in each iteration process, and a 2-order interpolation function is chosen to compensate the continuity of the discrete harmonic coefficients. The proposed method is verified by a comparison with the Jacobian matrix-based Newton iteration method and the direct numerical integration by using a single degree-of-freedom (DOF) system, and the effects of the excitation amplitudes are also investigated. Based on the generalized mode superposition method, the complex lap-type bolted joint beam structure is reduced into a series of single DOF oscillators with coupling nonlinear dynamic behaviors of the joint interfaces. The proposed method is applied to calculate the frequency response function (FRF) and verified by a comparison with the prediction of the Jacobian matrix-based iteration method. The results show that the solutions of the proposed method agree well with the results predicted by the direct numerical integration and Jacobian matrix-based iteration in literature. Larger excitation amplitude will induce the loss of the joint stiffness and degrade the nonlinearity effects. The predicted FRFs of the bolted joint beam system agree well with the results iterated by the Jacobian matrix-based method, and indicate a better convergence performance and a higher efficiency with much less computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bograd, S., Reuss, P., Schmidt, A., et al.: Modeling the dynamics of mechanical joints. Mech. Syst. Signal Process. 25(8), 2801–2826 (2011)

    Google Scholar 

  2. Brake, M.R.W.: The Mechanics of Jointed Structures: Recent Research and Open Challenges for Developing Predictive Models for Structural Dynamics. Springer, Berlin (2018)

    Google Scholar 

  3. Segalman, D.J., Gregory, D.L., Starr, M.J., et al.: Handbook on dynamics of jointed structures. Sandia Report (2009–4164). Sandia National Laboratories, Albuquerque (2009)

  4. Vakis, A.I., Yastrebov, V.A., Scheibert, J., et al.: Modeling and simulation in tribology across scales: an overview. Tribol. Int. 125, 169–199 (2018)

    Google Scholar 

  5. Kerschen, G., Worden, K., Vakakis, A.F., et al.: Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20(3), 505–592 (2006)

    Google Scholar 

  6. Wang, D., Xu, C., Fan, X.H., et al.: Reduced-order modeling approach for frictional stick-slip behaviors of joint interface. Mech. Syst. Signal Process. 103, 131–138 (2018)

    Google Scholar 

  7. Song, Y., Hartwigsen, C.J., McFarland, D.M., et al.: Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements. J. Sound Vib. 273(1–2), 249–276 (2004)

    Google Scholar 

  8. Song, Y.X., Hartwigsen, C.J., Bergman, L.A., et al.: A three-dimensional nonlinear reduced-order predictive joint model. Earthq. Eng. Eng. Vib. 2(1), 59–73 (2003)

    Google Scholar 

  9. Rajaei, M., Ahmadian, H.: Development of generalized Iwan model to simulate frictional contacts with variable normal loads. Appl. Math. Model. 38(15–16), 4006–4018 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Segalman, D.J.: A four-parameter Iwan model for lap-type joints. J. Appl. Mech. 72(5), 752–760 (2005)

    MATH  Google Scholar 

  11. Li, Y.K., Hao, Z.M.: A six-parameter Iwan model and its application. Mech. Syst. Signal Process. 68–69, 354–365 (2016)

    Google Scholar 

  12. Bazrafshan, M., Ahmadian, H., Jalali, H.: Modeling the interaction between contact mechanisms in normal and tangential directions. Int. J. Non-Linear Mech. 58(3), 111–119 (2014)

    Google Scholar 

  13. Iwan, W.D.: A distributed-element model for hysteresis and its steady-state dynamic response. J. Appl. Mech. 33(4), 893–900 (1966)

    Google Scholar 

  14. Iwan, W.D.: On a class of models for the yielding behavior of continuous and composite systems. J. Appl. Mech. 34(3), 612–617 (1967)

    Google Scholar 

  15. Gaul, L., Lenz, J.: Nonlinear dynamics of structures assembled by bolted joints. Acta Mech. 125(1–4), 169–181 (1997)

    MATH  Google Scholar 

  16. Gaul, L., Nitsche, R.: The role of friction in mechanical joints. Appl. Mech. Rev. 54(2), 93–106 (2001)

    Google Scholar 

  17. Abad, J., Medel, F.J., Franco, J.M.: Determination of Valanis model parameters in a bolted lap joint: experimental and numerical analyses of frictional dissipation. Int. J. Mech. Sci. 89(14), 289–298 (2014)

    Google Scholar 

  18. Quinn, D.D., Segalman, D.J.: Using series-series Iwan-type models for understanding joint dynamics. J. Appl. Mech. 72(5), 666–673 (2005)

    MATH  Google Scholar 

  19. Deshmukh, D.V., Berger, E.J., Begley, M.R., et al.: Correlation of a discrete friction (Iwan) element and continuum approaches to predict interface sliding behavior. Eur. J. Mech. A/Solids 26(2), 212–224 (2007)

    MATH  Google Scholar 

  20. Miller, J.D., Dane Quinn, D.: A two-sided interface model for dissipation in structural systems with frictional joints. J. Sound Vib. 321(1–2), 201–219 (2009)

    Google Scholar 

  21. Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos. Wiley, New York (2002)

    MATH  Google Scholar 

  22. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, Weinheim (1995)

    MATH  Google Scholar 

  23. David, J.W., Mitchell, L.D., Daws, J.W.: Using transfer matrices for parametric system forced response. J. Vib. Acoust. Stress Reliab. Des. 109(4), 356–360 (1987)

    Google Scholar 

  24. Wei, S., Han, Q., Peng, Z., et al.: Dynamic analysis of parametrically excited system under uncertainties and multi-frequency excitations. Mech. Syst. Signal Process. 72–73, 762–784 (2016)

    Google Scholar 

  25. Nacivet, S., Pierre, C., Thouverez, F., et al.: A dynamic Lagrangian frequency-time method for the vibration of dry-friction-damped systems. J. Sound Vib. 265(1), 201–219 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Jaumouillé, V., Sinou, J.-J., Petitjean, B.: An adaptive harmonic balance method for predicting the nonlinear dynamic responses of mechanical systems-application to bolted structures. J. Sound Vib. 329(19), 4048–4067 (2010)

    Google Scholar 

  27. Zhou, B., Thouverez, F., Lenoir, D.: A variable-coefficient harmonic balance method for the prediction of quasi-periodic response in nonlinear systems. Mech. Syst. Signal Process. 64–65, 233–244 (2015)

    Google Scholar 

  28. Ren, Y., Lim, T.M., Lim, M.K.: Identification of properties of nonlinear joints using dynamic test data. J. Vib. Acoust. 120(2), 324–330 (1998)

    Google Scholar 

  29. Cameron, T.M., Griffin, J.H.: An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. J. Appl. Mech. 56(1), 149–154 (1989)

    MathSciNet  MATH  Google Scholar 

  30. Zucca, S., Firrone, C.M.: Nonlinear dynamics of mechanical systems with friction contacts: coupled static and dynamic multi-harmonic balance method and multiple solutions. J. Sound Vib. 333(3), 916–926 (2014)

    Google Scholar 

  31. Armand, J., Pesaresi, L., Salles, L., et al.: A multiscale approach for nonlinear dynamic response predictions with fretting wear. J. Eng. Gas Turbines Power 139(2), 022505 (2016)

    Google Scholar 

  32. Armand, J., Salles, L., Schwingshackl, C.W., et al.: On the effects of roughness on the nonlinear dynamics of a bolted joint: a multiscale analysis. Eur. J. Mech. A. Solids 70, 44–57 (2018)

    Google Scholar 

  33. Argyros, I.K.: On Newton’s method under mild differentiability conditions and applications. Appl. Math. Comput. 102(2–3), 177–183 (1999)

    MathSciNet  MATH  Google Scholar 

  34. Amata, S., Argyrosb, I.K., Busquiera, S., et al.: Newton-type methods on Riemannian manifolds under Kantorovich-type conditions. Appl. Math. Comput. 227, 762–787 (2014)

    MathSciNet  Google Scholar 

  35. Lacayo, R., Pesaresi, L., Groß, J., et al.: Nonlinear modeling of structures with bolted joints: a comparison of two approaches based on a time-domain and frequency-domain solver. Mech. Syst. Signal Process. 114, 413–438 (2019)

    Google Scholar 

  36. Krack, M., Salles, L., Thouverez, F.: Vibration prediction of bladed disks coupled by friction joints. Arch. Comput. Methods Eng. 24(3), 589–636 (2017)

    MATH  Google Scholar 

  37. Petrov, E.P., Ewins, D.J.: Analytical formulation of friction interface elements for analysis of nonlinear multi-Harmonic vibrations of bladed discs. J. Turbomach. 125(2), 364–371 (2002)

    Google Scholar 

  38. Krack, M., Gross, J.: Harmonic Balance for Nonlinear Vibration Problems. Springer, Berlin (2019)

    MATH  Google Scholar 

  39. Chen, W., Deng, X.: Structural damping caused by micro-slip along frictional interfaces. Int. J. Mech. Sci. 47(8), 1191–1211 (2005)

    MATH  Google Scholar 

  40. Segalman, D.J., Starr, M.J.: Relationships among certain joint constitutive models. Sandia Report (2004-4321), Sandia National Laboratories, Albuquerque (2004)

  41. Segalman, D.J., Starr, M.J.: Inversion of Masing models via continuous Iwan systems. Int. J. Non-Linear Mech. 43(1), 74–80 (2008)

    Google Scholar 

  42. Argatov, I.I., Butcher, E.A.: On the Iwan models for lap-type bolted joints. Int. J. Non-Linear Mech. 46(2), 347–356 (2011)

    Google Scholar 

  43. Tarasov, V.E.: On chain rule for fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 30(13), 1–4 (2016)

    MathSciNet  Google Scholar 

  44. Wang, J.H., Chuang, S.C.: Reducing errors in the identification of structural joint parameters using error functions. J. Sound Vib. 273(1–2), 295–316 (2004)

    Google Scholar 

  45. Ferhatoglu, E., Cigeroglu, E., Özgüven, H.N.: A new modal superposition method for nonlinear vibration analysis of structures using hybrid mode shapes. Mech. Syst. Signal Process. 107, 317–342 (2018)

    Google Scholar 

  46. Cordero, A., Hueso, J.L., Martínez, E., et al.: Steffensen type methods for solving nonlinear equations. J. Comput. Appl. Math. 236(12), 3058–3064 (2012)

    MathSciNet  MATH  Google Scholar 

  47. Soleymani, F., Karimi, V.S.: Optimal Steffensen-type methods with eighth order of convergence. Comput. Math. Appl. 62(12), 4619–4626 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Ahmadian, H., Rajaei, M.: Identification of Iwan distribution density function in frictional contacts. J. Sound Vib. 333(15), 3382–3393 (2014)

    Google Scholar 

Download references

Acknowledgements

The work is supported by the Science Challenge Project (Grant No. TZ2018007). The authors also thank the National Natural Science Foundation of China (Grant Nos. 51775410, 11872059) for providing the financial support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhousuo Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Steffensen iteration

Fig. 15
figure 15

Two failure examples of Newton–Raphson iteration: a zero division errors; b dead cycle

The Steffensen iteration method involves two calculations of the steady-state dynamic responses.

$$\begin{aligned} {\bar{\mathbf{q}}}_{a}= & {} \left\{ {{\mathbf{f}}^{\mathrm{non}}\left( {{\dot{\bar{\mathbf{q}}}}_{k},{\bar{\mathbf{q}}}_{k} } \right) -{\bar{\mathbf{f}}}^{\mathrm{ext}}} \right\} /{\bar{\mathbf{r}}} \end{aligned}$$
(A.1)
$$\begin{aligned} {\bar{\mathbf{q}}}_{b}= & {} \left\{ {{\mathbf{f}}^{\mathrm{non}}\left( {{\dot{\bar{\mathbf{q}}}}_{a},{\bar{\mathbf{q}}}_{a} } \right) -{\bar{\mathbf{f}}}^{\mathrm{ext}}} \right\} /{\bar{\mathbf{r}}} \end{aligned}$$
(A.2)

Then, the finite differential formula is used to update the steady-state dynamic responses.

$$\begin{aligned} {\bar{\mathbf{q}}}_{k+1} ={\bar{\mathbf{q}}}_{k} -\frac{\left( {{\bar{\mathbf{q}}}_{a} -{\bar{\mathbf{q}}}_{k} } \right) ^{2}}{{\bar{\mathbf{q}}}_{b} -2{\bar{\mathbf{q}}}_{a} +{\bar{\mathbf{q}}}_{k} } \end{aligned}$$
(A.3)

1.2 Alternating frequency time (AFT)

The AFT only needs one calculation of the steady-state dynamic responses.

$$\begin{aligned} {\bar{\mathbf{q}}}_{k+1} =\left\{ {{\mathbf{f}}^{\mathrm{non}}\left( {{\dot{\bar{\mathbf{q}}}}_{k},{\bar{\mathbf{q}}}_{k} } \right) -{\bar{\mathbf{f}}}^{\mathrm{ext}}} \right\} /{\bar{\mathbf{r}}} \end{aligned}$$
(A.4)

1.3 Failure examples of Newton–Raphson iteration process

  1. (a)

    There may be zero division errors. The absolute value of the derivative function is very small near the converged steady-state solutions.

    $$\begin{aligned} f\left( x \right) =xe^{-x}=0 \end{aligned}$$
    (A.5)

    The initial iteration value is chosen as 2, and the iteration process is shown in Fig. 15a.

  2. (b)

    There may be a dead cycle. When a function has an inflection point, it may induce the iteration process into a dead cycle.

    $$\begin{aligned} f\left( x \right) =x^{3}-x-3=0 \end{aligned}$$
    (A.6)

    The initial iteration value is chosen as \(-3.0005\), \(-1.9619\), \(-1.1475\) or \(-0.00745\), and the iteration process is shown in Fig. 15b.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Zhang, Z. High-efficiency nonlinear dynamic analysis for joint interfaces with Newton–Raphson iteration process. Nonlinear Dyn 100, 543–559 (2020). https://doi.org/10.1007/s11071-020-05522-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05522-9

Keywords

Navigation