Skip to main content
Log in

Low-complexity hypersonic flight control with asymmetric angle of attack constraint

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study investigates the longitudinal flight control problem of air-breathing hypersonic vehicles subject to the asymmetric angle of attack (AoA) constraint. With the help of introduced tangent errors, the proposed control becomes low complexity in both structure and expression, especially for the non-adaptive control algorithm in the altitude loop. The asymmetric AoA constraint, which is more practical in comparison with the previously considered symmetric AoA constraint, is well accommodated. Output tracking errors are regulated into small residual sets within the designated convergence time. Uncertain aerodynamic coefficients, structural flexibilities and scramjet input saturation are synthetically handled, making the proposed control competent for a real hypersonic flight mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(\bar{c}\) :

Mean aerodynamic chord

\(C_{*}^{*}\) :

Polynomial fitting coefficients

D :

Drag

g :

Acceleration due to gravity

h :

Altitude

\(I_{\mathrm{yy}}\) :

Moment of inertia

L :

Lift

m :

Mass

\(M_{\mathrm{yy}}\) :

Pitching moment

\(N_i\) :

Generalized force for elastic mode \(\eta _i\)

\(\bar{q}\) :

Dynamic pressure

Q :

Pitch rate

S :

Reference area

T :

Thrust

V :

Velocity

\(z_T\) :

Thrust moment arm

\(\alpha \) :

Angle of attack

\(\delta _{\mathrm{c}}\) :

Canard deflection angle

\(\delta _{\mathrm{e}}\) :

Elevator deflection angle

\(\eta _i\) :

ith generalized elastic coordinate

\(\gamma \) :

Flight path angle

\(\omega _i\) :

Natural frequency for elastic mode \(\eta _i\)

\(\Phi \), \(\Phi _{\mathrm{com}}\) :

Fuel-to-air equivalency ratio and its command

\(\psi _i\), \(\psi _i'\) :

Coupling coefficients

\(\xi _i\) :

Damping ratio for elastic mode \(\eta _i\)

References

  1. An, H., Fidan, B., Liu, J., Wang, C., Wu, L.: Adaptive fault-tolerant control of air-breathing hypersonic vehicles robust to input nonlinearities. Int. J. Control 92(5), 1044–1060 (2019). https://doi.org/10.1080/00207179.2017.1381346

    Article  MathSciNet  MATH  Google Scholar 

  2. An, H., Liu, J., Wang, C., Wu, L.: Approximate back-stepping fault-tolerant control of the flexible air-breathing hypersonic vehicle. IEEE/ASME Trans. Mechatron. 21(3), 1680–1691 (2016). https://doi.org/10.1109/TMECH.2015.2507186

    Article  Google Scholar 

  3. An, H., Liu, J., Wang, C., Wu, L.: Disturbance observer-based antiwindup control for air-breathing hypersonic vehicles. IEEE Trans. Ind. Electron. 63(5), 3038–3049 (2016). https://doi.org/10.1109/TIE.2016.2516498

    Article  Google Scholar 

  4. An, H., Wu, Q., Wang, C., Cao, X.: Simplified fault-tolerant adaptive control of airbreathing hypersonic vehicles. Int. J. Control (2018). https://doi.org/10.1080/00207179.2018.1538569

    Article  Google Scholar 

  5. An, H., Wu, Q., Xia, H., Wang, C.: Multiple Lyapunov function-based longitudinal maneuver control of air-breathing hypersonic vehicles. Int. J. Control (2019). https://doi.org/10.1080/00207179.2019.1590650

    Article  Google Scholar 

  6. An, H., Xia, H., Wang, C.: Barrier Lyapunov function-based adaptive control for hypersonic flight vehicles. Nonlinear Dyn. 88(3), 1833–1853 (2017). https://doi.org/10.1007/s11071-017-3347-y

    Article  MathSciNet  MATH  Google Scholar 

  7. Basin, M., Yu, P., Shtessel, Y.: Hypersonic missile adaptive sliding mode control using finite- and fixed-time observers. IEEE Trans. Ind. Electron. 65(1), 930–941 (2018). https://doi.org/10.1109/TIE.2017.2701776

    Article  Google Scholar 

  8. Baumann, E., Pahle, J., Davis, M., White, J.: X-43A flush airdata sensing system flight-test results. J. Spacecr. Rockets 47(1), 48–61 (2010). https://doi.org/10.2514/1.41163

    Article  Google Scholar 

  9. Bechlioulis, C., Rovithakis, G.: A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems. Automatica 50(4), 1217–1226 (2014). https://doi.org/10.1016/j.automatica.2014.02.020

    Article  MathSciNet  MATH  Google Scholar 

  10. Bolender, M.: An overview on dynamics and controls modelling of hypersonic vehicles. In: American Control Conference, 2009. ACC’09, pp. 2507–2512. IEEE (2009). https://doi.org/10.1109/ACC.2009.5159864

  11. Bolender, M., Doman, D.: Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle. J. Spacecr. Rockets 44(2), 374–387 (2007). https://doi.org/10.2514/1.23370

    Article  Google Scholar 

  12. Bu, X.: Envelope-constraint-based tracking control of air-breathing hypersonic vehicles. Aerosp. Sci. Technol. 95, 105,429 (2019). https://doi.org/10.1016/j.ast.2019.105429

    Article  Google Scholar 

  13. Bu, X., Lei, H.: A fuzzy wavelet neural network-based approach to hypersonic flight vehicle direct nonaffine hybrid control. Nonlinear Dyn. 94(3), 1657–1668 (2018). https://doi.org/10.1007/s11071-018-4447-z

    Article  MATH  Google Scholar 

  14. Bu, X., Xiao, Y., Lei, H.: An adaptive critic design-based fuzzy neural controller for hypersonic vehicles: predefined behavioral nonaffine control. IEEE/ASME Trans. Mechatron. 24(4), 1871–1881 (2019). https://doi.org/10.1109/TMECH.2019.2928699

    Article  Google Scholar 

  15. Fiorentini, L., Serrani, A.: Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model. Automatica 48, 1248–1261 (2012). https://doi.org/10.1016/j.automatica.2012.04.006

    Article  MathSciNet  MATH  Google Scholar 

  16. Fiorentini, L., Serrani, A., Bolender, M., Doman, D.: Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles. J. Guid. Control Dyn. 32(2), 402–417 (2009). https://doi.org/10.2514/1.39210

    Article  Google Scholar 

  17. Hirschel, E., Weiland, C.: Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles. Springer, Berlin (2009)

    Book  Google Scholar 

  18. Hu, Q., Wang, C., Li, Y., Huang, J.: Adaptive control for hypersonic vehicles with time-varying faults. IEEE Trans. Aerosp. Electron. Syst. 54(3), 1442–1455 (2018). https://doi.org/10.1109/TAES.2018.2793319

    Article  Google Scholar 

  19. Khalil, H.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  20. Krstic, M., Kanellakopoulos, I., Kokotovic, P.: Nonlinear and Adaptive Control Design. Wiley, Hoboken (1995)

    MATH  Google Scholar 

  21. Mu, C., Sun, C., Xu, W.: Fast sliding mode control on air-breathing hypersonic vehicles with transient response analysis. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 230(1), 23–34 (2016). https://doi.org/10.1177/0959651815609518

    Article  Google Scholar 

  22. Parker, J., Serrani, A., Yurkovich, S., Bolender, M., Doman, D.: Control-oriented modeling of an air-breathing hypersonic vehicle. J. Guid. Control Dyn. 30(3), 856–869 (2007). https://doi.org/10.2514/1.27830

    Article  Google Scholar 

  23. Peebles, C.: Road to Mach 10: Lessons Learned from the X-43A Flight Research Program. AIAA, Reston (2008)

    Book  Google Scholar 

  24. Serrani, A., Bolender, M.: Addressing limits of operability of the scramjet engine in adaptive control of a generic hypersonic vehicle. In: IEEE 55th Conference on Decision and Control, pp. 7567–7572. IEEE (2016)

  25. Shen, Q., Jiang, B., Cocquempot, V.: Fault-tolerant control for TS fuzzy systems with application to near-space hypersonic vehicle with actuator faults. IEEE Trans. Fuzzy Syst. 20(4), 652–665 (2012). https://doi.org/10.1109/TFUZZ.2011.2181181

    Article  Google Scholar 

  26. Shin, J.: Adaptive dynamic surface control for a hypersonic aircraft using neural networks. IEEE Trans. Aerosp. Electron. Syst. 53(5), 2277–2289 (2017). https://doi.org/10.1109/TAES.2017.2691198

    Article  Google Scholar 

  27. Stephen, E., Hoenisch, S., Riggs, C., Waddel, M., McLaughlin, T., Bolender, M.: HIFiRE 6 unstart conditions at off-design mach numbers. In: 53rd AIAA Aerospace Sciences Meeting, pp. 1–19. AIAA (2015)

  28. Sun, J., Song, S., Wu, G.: Fault-tolerant track control of hypersonic vehicle based on fast terminal sliding mode. J. Spacecr. Rockets 54(6), 1304–1316 (2017). https://doi.org/10.2514/1.A33890

    Article  Google Scholar 

  29. Wang, N., Wu, H., Guo, L.: Coupling-observer-based nonlinear control for flexible air-breathing hypersonic vehicles. Nonlinear Dyn. 78(3), 2141–2159 (2014). https://doi.org/10.1007/s11071-014-1572-1

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, Q., Stengel, R.: Robust nonlinear control of a hypersonic aircraft. J. Guid. Control Dyn. 23(4), 577–585 (2000). https://doi.org/10.2514/6.1999-4000

    Article  Google Scholar 

  31. Wang, Z., Yuan, J.: Full state constrained adaptive fuzzy control for stochastic nonlinear switched systems with input quantization. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2912150

    Article  Google Scholar 

  32. Wang, Z., Yuan, Y., Yang, H.: Adaptive fuzzy tracking control for strict-feedback markov jumping nonlinear systems with actuator failures and unmodeled dynamics. IEEE Trans. Cybern. 50(1), 126–139 (2020). https://doi.org/10.1109/TCYB.2018.2865677

    Article  Google Scholar 

  33. Wang, Z., Zhang, B., Yuan, J.: Decentralized adaptive fault tolerant control for a class of interconnected systems with nonlinear multisource disturbances. J. Frankl. Inst. 355(11), 4493–4514 (2018). https://doi.org/10.1016/j.jfranklin.2017.10.038

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu, B., Shi, Z.: An overview on flight dynamics and control approaches for hypersonic vehicles. Sci. China Inf. Sci. 58(7), 1–19 (2015). https://doi.org/10.1007/s11432-014-5273-7

    Article  MathSciNet  Google Scholar 

  35. Xu, B., Shi, Z., Sun, F., He, W.: Barrier Lyapunov function based learning control of hypersonic flight vehicle with AOA constraint and actuator faults. IEEE Trans. Cybern. 49(3), 1147–1157 (2018). https://doi.org/10.1109/TCYB.2018.2794972

    Article  Google Scholar 

  36. Xu, B., Wang, D., Zhang, Y., Shi, Z.: DOB based neural control of flexible hypersonic flight vehicle considering wind effects. IEEE Trans. Ind. Electron. 64(11), 8676–8685 (2017). https://doi.org/10.1109/TIE.2017.2703678

    Article  Google Scholar 

  37. Xu, H., Mirmirani, M., Ioannou, P.: Adaptive sliding mode control design for a hypersonic flight vehicle. J. Guid. Control Dyn. 27(5), 829–838 (2004). https://doi.org/10.2514/1.12596

    Article  Google Scholar 

  38. Zinnecker, A., Serrani, A., Bolender, M., Doman, D.: Combined reference governor and anti-windup design for constrained hypersonic vehicles models. In: AIAA Guidance, Navigation, and Control Conference, pp. 1–20. AIAA 2009–6283 (2009)

Download references

Acknowledgements

The authors would like to thank the editors and reviewers of Nonlinear Dynamics for their valuable efforts on the review of this paper.

Funding

This paper was funded in part by the National Natural Science Foundation of China (Grant No. 61903101), in part by the National Postdoctoral Program for Innovative Talents (Grant No. BX201700064), and in part by the Fundamental Research Funds for the Central Universities (Grant No. HIT.NSRIF.2020021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao An.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, H., Guo, Z., Wang, G. et al. Low-complexity hypersonic flight control with asymmetric angle of attack constraint. Nonlinear Dyn 100, 435–449 (2020). https://doi.org/10.1007/s11071-020-05531-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05531-8

Keywords

Navigation