Skip to main content
Log in

Adaptive backstepping optimal control of a fractional-order chaotic magnetic-field electromechanical transducer

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper develops an adaptive backstepping optimal control scheme for a fractional-order chaotic magnetic-field electromechanical transducer with the saturated control inputs. A dynamical analysis is used to check for abundant dynamical behaviors of the system by using phase diagrams and time histories under different excitations and fractional orders. A fuzzy wavelet neural network (FWNN) is utilized with an adaptive feedforward control input in order to estimate the unknown dynamical system. An auxiliary system is then developed to compensate the effects caused by the saturated control inputs, along with a tracking differentiator (TD) to realize the signal estimation associated with the fractional derivative. Taking FWNN, TD and auxiliary system into the framework of the fractional-order backstepping control, an adaptive feedforward controller is designed. In addition, we use a data-driven learning framework based on an actor critic network to solve the derived Hamilton–Jacobi–Bellman equation. The whole control policy, composing of an adaptive feedforward controller and an optimal feedback controller, not only guarantees the boundness of all signals and suppresses oscillations from the chaos and deadzone, but also makes the cost function to be smallest. Finally, the simulation results demonstrate the effectiveness of the presented scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ngueuteu, G.S.M., Woafo, P.: Dynamics and synchronization analysis of coupled fractional-order nonlinear electromechanical systems. Mech. Res. Commun. 46, 20–25 (2012)

    Google Scholar 

  2. Ngueuteu, G.S.M., Yamapi, R., Woafo, P.: Stability of synchronized network of chaotic electromechanical devices with nearest and all-to-all couplings. J. Sound Vib. 318, 1119–1138 (2008)

    Google Scholar 

  3. Luo, S., Li, S., Tajaddodianfar, F.: Chaos and adaptive control of the fractional-order magnetic-field electromechanical transducer. Int. J. Bifurc. Chaos 27, 1750203 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Ngueuteu, G.S.M., Yamapi, R., Woafo, P.: Effects of higher nonlinearity on the dynamics and synchronization of two coupled electromechanical devices. Commun. Nonlinear Sci. Numer. Simul. 13, 1213–1240 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Aghababa, M.P.: A fractional sliding mode for finite-time control scheme with application to stabilization of electrostatic and electromechanical transducers. Appl. Math. Model. 39, 6103–6113 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Pérez-Molina, M., Pérez-Polo, M.F.: Fold-Hopf bifurcation, steady state, self-oscillating and chaotic behavior in an electromechanical transducer with nonlinear control. Commun. Nonlinear Sci. Numer. Simul. 17, 5172–5188 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Wei, Y., Chen, Y., Wang, J., Wang, Y.: Analysis and description of the infinite-dimensional nature for nabla discrete fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 72, 472–492 (2019)

    MathSciNet  Google Scholar 

  8. Liu, H., Li, S., Wang, H., Sun, Y.: Adaptive fuzzy control for a class of unknown fractional-order neural networks subject to input nonlinearities and dead-zones. Inf. Sci. 454–455, 30–45 (2018)

    MathSciNet  Google Scholar 

  9. Sheng, D., Wei, Y., Cheng, S., Wang, Y.: Observer-based adaptive backstepping control for fractional order systems with input saturation. ISA Trans. 82, 18–29 (2018)

    Google Scholar 

  10. Liu, H., Pan, Y., Li, S., Chen, Y.: Adaptive fuzzy backstepping control of fractional-order nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 47, 2209–2217 (2017)

    Google Scholar 

  11. Wei, Y., Wang, J., Liu, T., Wang, Y.: Sufficient and necessary conditions for stabilizing singular fractional order systems with partially measurable state. J. Frankl. Inst. 356, 1975–1990 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Jafari, A.A., Mohammadi, S.M.A., Farsangi, M.M., Naseriyeh, M.H.: Observer-based fractional-order adaptive type-2 fuzzy backstepping control of uncertain nonlinear MIMO systems with unknown dead-zone. Nonlinear Dyn. 95, 3249–3274 (2019)

    Google Scholar 

  13. Tusset, A.M., Balthazar, J.M., Bassinello, D.G., Jr, B.R.P., Felix, J.L.P.: Statements on chaos control designs, including a fractional order dynamical system, applied to a “MEMS” comb-drive actuator. Nonlinear Dyn. 69, 1837–1857 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Aghababa, M.P.: A Lyapunov-based control scheme for robust stabilization of fractional chaotic systems. Nonlinear Dyn. 78, 2129–2140 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Ding, D., Qi, D., Peng, J., Wang, Q.: Asymptotic pseudo-state stabilization of commensurate fractional-order nonlinear systems with additive disturbance. Nonlinear Dyn. 81, 667–677 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Wei, Y., Chen, Y., Liang, S., Wang, Y.: A novel algorithm on adaptive backstepping control of fractional order systems. Neurocomputing 165, 395–402 (2015)

    Google Scholar 

  17. Heydarinejad, H., Delavari, H., Baleanu, D.: Fuzzy type-2 fractional backstepping blood glucose control based on sliding mode observer. Int. J. Dyn. Control 7, 341–354 (2018)

    MathSciNet  Google Scholar 

  18. Modares, H., Lewis, F.L.: Optimal tracking control of nonlinear partially-unknown constrained-input systems using integral reinforcement learning. Automatica 50, 1780–1792 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Mohammadzadeh, A., Ghaemi, S.: Optimal synchronization of fractional-order chaotic systems subject to unknown fractional order, input nonlinearities and uncertain dynamic using type-2 fuzzy CMAC. Nonlinear Dyn. 88, 2993–3002 (2017)

    Google Scholar 

  20. Modares, H., Lewis, F.L., Jiang, Z.P.: H \(\infty \) tracking control of completely unknown continuous-time systems via off-policy reinforcement learning. IEEE Trans. Neural Netw. Learn. Syst. 26, 2550–2562 (2015)

    MathSciNet  Google Scholar 

  21. Modares, H., Sistani, M.B.N., Lewis, F.L.: A policy iteration approach to online optimal control of continuous-time constrained-input systems. ISA Trans. 52, 611–621 (2013)

    Google Scholar 

  22. Sun, K., Li, Y., Tong, S.: Fuzzy adaptive output feedback optimal control design for strict-feedback nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 47, 33–44 (2017)

    Google Scholar 

  23. Sun, J., Liu, C.: Distributed fuzzy adaptive backstepping optimal control for nonlinear multi-missile guidance systems with input saturation. IEEE Trans. Fuzzy Syst. 27, 447–461 (2019)

    Google Scholar 

  24. Sun, J., Liu, C., Zhao, X.: Backstepping-based zero-sum differential games for missile-target interception systems with input and output constraints. IET Control Theor. Appl. 12, 243–253 (2017)

    MathSciNet  Google Scholar 

  25. Liu, Y.-J., Gao, Y., Tong, S., Li, Y.: Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone. IEEE Trans. Fuzzy Syst. 24, 16–28 (2016)

    Google Scholar 

  26. Kanellopoulos, A., Vamvoudakis, K.G.: A moving target defense control framework for cyber-physical systems. IEEE Trans. Autom. Control (2019). https://doi.org/10.1109/TAC.2019.2915746

    Article  MATH  Google Scholar 

  27. Vamvoudakis, K.G., Lewis, F.L.: Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem. Automatica 46, 878–888 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Vamvoudakis, K.G., Modares, H., Kiumarsi, B., Lewis, F.L.: Game theory-based control system algorithms with real-time reinforcement learning: How to solve multiplayer games online. IEEE Control Syst. Mag. 37, 33–52 (2017)

    MathSciNet  Google Scholar 

  29. Vamvoudakis, K.G., Hespanha, J.P.: Cooperative q-learning for rejection of persistent adversarial inputs in networked linear quadratic systems. IEEE Trans. Autom. Control 63, 1018–1031 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Luo, S., Li, S., Tajaddodianfar, F., Hu, J.: Anti-oscillation and chaos control of the fractional-order brushless DC motor system via adaptive echo state networks. J. Frankl. Inst. 355, 6435–6453 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Wang, J., Zhou, Y.: A class of fractional evolution equations and optimal controls. Nonlinear Anal. Real World Appl. 12, 262–272 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Li, K., Peng, J., Jia, J.: Cauchy problems for fractional differential equations with Riemann–Liouville fractional derivatives. J. Funct. Anal. 263, 476–510 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Wei, Z., Li, Q., Che, J.: Initial value problems for fractional differential equations involving Riemann–Liouville sequential fractional derivative. J. Math. Anal. Appl. 367, 260–272 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34, 200–218 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Garrappa, R.: Grünwald–Letnikov operators for fractional relaxation in Havriliak–Negami models. Commun. Nonlinear Sci. Numer. Simul. 38, 178–191 (2016)

    MathSciNet  Google Scholar 

  36. Ma, L., Li, C.: On finite part integrals and Hadamard-type fractional derivatives. J. Comput. Nonlinear Dyn. (2017). https://doi.org/10.1115/1111.4037930

    Article  Google Scholar 

  37. Ma, L., Li, C.: On Hadamard fractional calculus. Fractals 25, 1750033 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Zhou, P., Bai, R.J., Zheng, J.M.: Stabilization of a fractional-order chaotic brushless DC motor via a single input. Nonlinear Dyn. 82, 519–525 (2015)

    MATH  Google Scholar 

  39. Sabouri, J., Effati, S., Pakdaman, M.: A neural network approach for solving a class of fractional optimal control problems. Neural Process. Lett. 45, 59–74 (2017)

    Google Scholar 

  40. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951–2957 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Westerlund, S., Ekstam, L.: Capacitor theory. IEEE Trans. Dielect. Electr. Insul. 1, 826–839 (1994)

    Google Scholar 

  42. Jesus, I.S., Machado, J.T.: Development of fractional order capacitors based on electrolyte processes. Nonlinear Dyn. 56, 45–55 (2009)

    MATH  Google Scholar 

  43. John, D.A., Banerjee, S., Bohannan, G.W., Biswas, K.: Solid-state fractional capacitor using MWCNT-epoxy nanocomposite. Appl. Phys. Lett. 110, 163504 (2017)

    Google Scholar 

  44. Enelund, M., Lesieutre, G.A.: Time domain modeling of damping using anelastic displacement fields and fractional calculus. Int. J. Solids Struct. 36, 4447–4472 (1999)

    MATH  Google Scholar 

  45. Mohammadzadeh, A., Zhang, W.: Dynamic programming strategy based on a type-2 fuzzy wavelet neural network. Nonlinear Dyn. 95, 1661–1672 (2019)

    Google Scholar 

  46. Luo, S., Song, Y.: Chaos analysis-based adaptive backstepping control of the microelectromechanical resonators with constrained output and uncertain time delay. IEEE Trans. Ind. Electron. 63, 6217–6225 (2016)

    Google Scholar 

  47. Yang, Y., Tan, J., Yue, D.: Prescribed performance tracking control of a class of uncertain pure-feedback nonlinear systems with input saturation. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2017.2784451

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by the Key Project of National Natural Science Foundation of China (No.61933012), International Communication and Cooperation Program of National Natural Science Foundation of China(No. 61860206008), Young Scientific Talents of Education Department of Guizhou Province (No. [2018]111), Science and Technology Planning Project of Guizhou Province (No. [2018]5781), and Research Project of Introduction of Talents of Guizhou University (No. [2017]27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohua Luo.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Lewis, F.L., Song, Y. et al. Adaptive backstepping optimal control of a fractional-order chaotic magnetic-field electromechanical transducer. Nonlinear Dyn 100, 523–540 (2020). https://doi.org/10.1007/s11071-020-05518-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05518-5

Keywords

Navigation