Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Copper-catalysed benzylic C–H coupling with alcohols via radical relay enabled by redox buffering

Abstract

Cross-coupling reactions enable rapid, convergent synthesis of diverse molecules and provide the foundation for modern chemical synthesis. The most widely used methods employ sp2-hybridized coupling partners, such as aryl halides or related pre-functionalized substrates. Here, we demonstrate copper-catalysed oxidative cross-coupling of benzylic C–H bonds with alcohols to afford benzyl ethers, enabled by a redox buffering strategy that maintains the activity of the copper catalyst throughout the reaction. The reactions employ the C–H substrate as the limiting reagent and exhibit broad scope with respect to both coupling partners. This approach to direct site-selective functionalization of C(sp3)–H bonds provides the basis for efficient three-dimensional diversification of organic molecules and should find widespread utility in organic synthesis, particularly for medicinal chemistry applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cross-coupling reactions of benzylic C–H bonds and alcohols via a radical relay pathway.
Fig. 2: Cu-catalysed benzylic C–H functionalization with NFSI as the oxidant.
Fig. 3: Electronic effects and site selectivity observed in the oxidative coupling of ethylarenes and methanol.
Fig. 4: Calculated reaction pathways and energy landscape for (biox)CuI/NFSI-mediated methoxylation of ethylbenzene.
Fig. 5: Assessment of different benzylic C–H substrates in oxidative cross-coupling reactions with methanol.
Fig. 6: Assessment of different alcohols and C–H/alcohol coupling partners in benzylic C–H etherification reactions.

Similar content being viewed by others

Data availability

All of the data supporting the findings of this study are available within the paper and its Supplementary Information file.

References

  1. Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    CAS  PubMed  Google Scholar 

  2. Boström, J., Brown, D. G., Young, R. J. & Keserü, G. M. Expanding the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Disc. 17, 709–727 (2018).

    Google Scholar 

  3. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    CAS  PubMed  Google Scholar 

  4. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    CAS  PubMed  Google Scholar 

  5. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).

    CAS  PubMed  Google Scholar 

  6. Thompson, T. N. Optimization of metabolic stability as a goal of modern drug design. Med. Res. Rev. 21, 412–449 (2001).

    CAS  PubMed  Google Scholar 

  7. White, M. C. & Zhao, J. Aliphatic C–H oxidations for late-stage functionalization. J. Am. Chem. Soc. 140, 13988–14009 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Muniz, K. & Bosnidou, A. E. Intermolecular radical C(sp 3)–H amination under iodine catalysis. Angew. Chem. Int. Ed. 58, 7485–7489 (2019).

    Google Scholar 

  9. Chiappini, N., Mack, J. & Du Bois, J. Intermolecular C(sp 3)−H amination of complex molecules. Angew. Chem. Int. Ed. 57, 4956–4959 (2018).

    CAS  Google Scholar 

  10. Clark, J. R., Feng, K., Sookezian, A. & White, M. C. Manganese-catalysed benzylic C(sp 3)–H amination for late-stage functionalization. Nat. Chem. 10, 583–591 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Davies, H. M. L. & Morton, D. Guiding principles for site selective and stereoselective intermolecular C–H functionalization by donor/acceptor rhodium carbenes. Chem. Soc. Rev. 40, 1857–1869 (2011).

    CAS  PubMed  Google Scholar 

  12. Liu, W. & Groves, J. T. Manganese catalyzed C–H halogenation. Acc. Chem. Res. 48, 1727–1735 (2015).

    CAS  PubMed  Google Scholar 

  13. Margrey, K. A., Czaplyski, W. L., Nicewicz, D. A. & Alexanian, E. J. A general strategy for aliphatic C–H functionalization enabled by organic photoredox catalysis. J. Am. Chem. Soc. 140, 4213–4217 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, W. et al. Enantioselective cyanation of benzylic C–H bonds via copper-catalyzed radical relay. Science 353, 1014–1018 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sharma, A. & Hartwig, J. F. Metal-catalysed azidation of tertiary C–H bonds suitable for late-stage functionalization. Nature 517, 600–604 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang, X. & Groves, J. T. Taming azide radicals for catalytic C–H azidation. ACS Catal. 6, 751–759 (2016).

    CAS  Google Scholar 

  17. Czaplyski, W. L., Na, C. G. & Alexanian, E. J. C–H xanthylation: a synthetic platform for alkane functionalization. J. Am. Chem. Soc. 138, 13854–13857 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Vasilopoulos, A., Zultanski, S. L. & Stahl, S. S. Feedstocks to pharmacophores: Cu-catalyzed oxidative arylation of inexpensive alkylarenes enabling direct access to diarylalkanes. J. Am. Chem. Soc. 139, 7705–7708 (2017).

    CAS  PubMed  Google Scholar 

  19. Wang, Z., Zheng, Z., Xu, X., Mao, J. & Walsh, P. J. One-pot aminobenzylation of aldehydes with toluenes. Nat. Commun. 9, 3365 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Shield, B. J. & Doyle, A. G. Direct C(sp 3)–H cross coupling enabled by catalytic generation of chlorine radicals. J. Am. Chem. Soc. 138, 12719–12722 (2016).

    Google Scholar 

  21. Heitz, D. R., Tellis, J. C. & Molander, G. A. Photochemical nickel-catalyzed C–H arylation: synthetic scope and mechanistic investigations. J. Am. Chem. Soc. 138, 12715–12718 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Perry, I. B. et al. Direct arylation of strong aliphatic C–H bonds. Nature 560, 70–75 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, D. et al. Nickel-catalyzed selective oxidative radical cross-coupling: an effective strategy for inert Csp 3–H functionalization. Org. Lett. 17, 998–1001 (2015).

    CAS  PubMed  Google Scholar 

  24. Tran, B. L., Li, B., Driess, M. & Hartwig, J. F. Copper-catalyzed intermolecular amidation and imidation of unactivated alkanes. J. Am. Chem. Soc. 136, 2555–2563 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Miyaura, N. & Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 95, 2457–2483 (1995).

    CAS  Google Scholar 

  26. Ruiz-Castillo, P. & Buchwald, S. L. Applications of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev. 116, 12564–12649 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hartwig, J. F. Transition metal catalyzed synthesis of arylamines and aryl ethers from aryl halides and triflates: scope and mechanism. Angew. Chem. Int. Ed. 37, 2046–2067 (1998).

    CAS  Google Scholar 

  28. Williamson, A. Theory of ætherification. Philos. Mag. 37, 350–356 (1850).

    Google Scholar 

  29. Enthaler, S. & Company, A. Palladium-catalysed hydroxylation and alkoxylation. Chem. Soc. Rev. 40, 4912–4924 (2011).

    CAS  PubMed  Google Scholar 

  30. Chapman, L. M., Beck, J. C., Wu, L. & Reisman, S. E. Enantioselective total synthesis of (+)-psiguadial B. J. Am. Chem. Soc. 138, 9803–9806 (2016).

    CAS  PubMed  Google Scholar 

  31. Maloney, D. J., Chen, S. & Hecht, S. M. Stereoselective synthesis of the atropisomers of myristinin B/C. Org. Lett. 8, 1925–1927 (2006).

    CAS  PubMed  Google Scholar 

  32. Lee, B. J., Deglopper, K. S. & Yoon, T. P. Site-selective alkoxylation of benzylic C–H bonds via photoredox catalysis. Angew. Chem. Int. Ed. 59, 197–202 (2019).

    Google Scholar 

  33. Rafiee, M., Wang, F., Hruszkewycz, D. P. & Stahl, S. S. N‑hydroxyphthalimide-mediated electrochemical iodination of methylarenes and comparison to electron-transfer-initiated C−H functionalization. J. Am. Chem. Soc. 140, 22–25 (2018).

    CAS  PubMed  Google Scholar 

  34. Zhang, W., Chen, P. & Liu, G. Copper-catalyzed arylation of benzylic C–H bonds with alkylarenes as the limiting reagents. J. Am. Chem. Soc. 139, 7709–7712 (2017).

    CAS  PubMed  Google Scholar 

  35. Ni, Z. et al. Highly regioselective copper-catalyzed benzylic C−H amination by N-fluorosulfonimide. Angew. Chem. Int. Ed. 51, 1244–1247 (2012).

    CAS  Google Scholar 

  36. Yang, H. et al. Silver-promoted oxidative benzylic C−H trifluoromethoxylation. Angew. Chem. Int. Ed. 57, 13266–13270 (2018).

    CAS  Google Scholar 

  37. Xiao, H. et al. Copper-catalyzed late-stage benzylic C(sp3)–H trifluoromethylation. Chem 5, 940–949 (2019).

    CAS  Google Scholar 

  38. Janz, G. J. Cyanogen. Inorg. Synth. 5, 43–48 (1957).

    CAS  Google Scholar 

  39. Demir, A. S., Reis, Ö. & Emrullahoglu, M. Role of copper species in the oxidative dimerization of arylboronic acids: synthesis of symmetrical biaryls. J. Org. Chem. 68, 10130–10134 (2003).

    CAS  PubMed  Google Scholar 

  40. Hong, Y. et al. Direct observation of reduction of Cu(ii) to Cu(i) by P–H compounds using XAS and EPR spectroscopy. Organometallics 35, 1426–1429 (2016).

    Google Scholar 

  41. Zhang, W., Wu, L., Chen, P. & Liu, G. Enantioselective arylation of benzylic C–H bonds via copper-catalyzed radical relay. Angew. Chem. Int. Ed. 58, 6425–6429 (2019).

    CAS  Google Scholar 

  42. Colomer, I., Chamberlain, A. E. R. & Donohoe, T. J. Hexafluoroisopropanol as a highly versatile solvent. Nat. Rev. Chem. 1, 0088 (2017).

    CAS  Google Scholar 

  43. Bess, E. N. et al. Analyzing site selectivity in Rh2(esp)2-catalyzed intermolecular C–H amination reactions. J. Am. Chem. Soc. 136, 5783–5789 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Haines, B. E. et al. Cu-catalyzed aromatic C–H imidation with N-fluorobenzenesulfonimide: mechanistic details and predictive models. Chem. Sci. 8, 988–1001 (2017).

    CAS  PubMed  Google Scholar 

  45. Murphy, J. A. in Radicals in Organic Synthesis (eds Renaud, P. & Sibi, M. P.) 298–315 (Wiley, 2001).

  46. Banerjee, S., Sathyamoorthi, S., Du Bois, J. & Zare, R. N. Mechanistic analysis of a copper-catalyzed C–H oxidative cyclization of carboxylic acids. Chem. Sci. 8, 7003–7008 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Loew, E. R., MacMillan, R. & Kaiser, M. E. The anti-histamine properties of benadryl, β-dimethylaminoethyl benzhydryl ether hydrochloride. J. Pharmacol. Exp. Ther. 86, 229–238 (1946).

    CAS  PubMed  Google Scholar 

  48. Du, L. et al. Molecular hybridization, synthesis, and biological evaluation of novel chroman I Kr and I Ks dual blockers. Bioorg. Med. Chem. Lett. 19, 1477–1480 (2009).

    CAS  PubMed  Google Scholar 

  49. Rhodes, J. R. Immunopotentiatory agents and physiologically acceptable salts thereof. US patent US5508310A (1996).

  50. Fushimi, N., Yonekubo, S., Ohno, K. & Miyagi, T. Nitrogen-containing fused ring derivatives, pharmaceutical compositions containing them and their pharmaceutical use. Japan patent 5308342B2 (2008).

  51. Smith, H. W. Cyclopentapyrazole and tetrahydroindazole compounds. Worldwide patent 8607357 (1986).

  52. Schepers, G. Benzbromarone therapy in hyperuricaemia; comparison with allopurinol and probenecid. J. Int. Med. Res. 9, 511–515 (1981).

    CAS  PubMed  Google Scholar 

  53. Talele, T. T. The ‘cyclopropyl fragment’ is a versatile player that frequently appears in preclinical/clinical drug molecules. J. Med. Chem. 59, 8712–8756 (2016).

    CAS  PubMed  Google Scholar 

  54. Wuitschik, G. et al. Oxetanes in drug discovery: structural and synthetic insights. J. Med. Chem. 53, 3227–3246 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Li (Merck) for technical assistance. This work was supported by the NIH (R01 GM126832 to S.S.S. and F32 GM129909 to J.A.B.), Jiangsu Province (BK20161307 and 333 Talent Project to H.H.), Huaiyin Normal University (JSKC18014 to H.H.) and Merck (to S.W.K.; travel funds to S.-J.C.). M.M. acknowledges a doctoral dissertation fellowship from the University of Minnesota. Spectroscopic instrumentation was supported by a gift from P. J. Bender, the NSF (CHE-1048642) and the NIH (1S10 OD020022–1).

Author information

Authors and Affiliations

Authors

Contributions

H.H. and S.-J.C. performed the experimental work and led the data interpretation and analysis. S.-J.C. and J.A.B. designed and implemented the mechanistic experiments. M.M. and S.M.P. conducted the computational studies. All work was done in consultation with S.S.S., S.W.K. and C.J.C. All authors contributed to preparation of the manuscript.

Corresponding author

Correspondence to Shannon S. Stahl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1 and 2, Tables 1–13 and references.

Supplementary Data 1

Cartesian coordinates of all density functional theory-optimized structures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Chen, SJ., Mandal, M. et al. Copper-catalysed benzylic C–H coupling with alcohols via radical relay enabled by redox buffering. Nat Catal 3, 358–367 (2020). https://doi.org/10.1038/s41929-020-0425-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-0425-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing