Skip to main content
Log in

In situ gelling-polypeptide hydrogel systems for the subcutaneous transplantation of MIN6 cells

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Subcutaneous islet transplantation can be easily conducted with minimum invasiveness, and the implant can be monitored easily. However, a major disadvantage of this transplantation technique is its poor efficacy which could be attributed to poor oxygenation and inadequate vascularization at the subcutaneous tissue. In this study, we explored the use of thermosensitive methoxy-poly(ethylene glycol)-poly(Ala), mPEG-poly(Ala) hydrogels as cell-encapsulating materials for the subcutaneous transplantation of MIN6 cells. We confirmed favorable biocompatibility between the materials and cells in vitro, including cell viability and insulin secretion. Histopathological tissue analysis revealed that transplanted MIN6 cells survived and contained insulin in nude mice 14 days after implantation. Moreover, we observed positive CD31 staining, implying new vessel formation, in the graft without MIN6 cells at 7 and 14 days after implantation. These results indicate the feasibility of using mPEG-poly(Ala) hydrogels as delivery carriers for subcutaneous transplantation of MIN6 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM, Lakey JRT, Shapiro AMJ (2005) Five-year follow-up after clinical islet transplantation. Diabetes 54(7):2060–2069. https://doi.org/10.2337/diabetes.54.7.2060

    Article  CAS  PubMed  Google Scholar 

  2. Sakata N, Obenaus A, Chan NK, Mace J, Chinnock R, Hathout E (2009) Factors affecting islet graft embolization in the liver of diabetic mice. Islets 1(1):26–33. https://doi.org/10.4161/isl.1.1.8563

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rajab A (2010) Islet transplantation: alternative sites. Current Diabetes Reports 10(5):332–337. https://doi.org/10.1007/s11892-010-0130-6

    Article  PubMed  Google Scholar 

  4. Kawahara T, Kin T, Shapiro AM (2012) A comparison of islet autotransplantation with allotransplantation and factors elevating acute portal pressure in clinical islet transplantation. Journal of Hepato-Biliary-Pancreatic Sciences 19(3):281–288. https://doi.org/10.1007/s00534-011-0441-2

    Article  PubMed  Google Scholar 

  5. Kawahara T, Kin T, Kashkoush S, Gala-Lopez B, Bigam DL, Kneteman NM, Koh A, Senior PA, Shapiro AM (2011) Portal vein thrombosis is a potentially preventable complication in clinical islet transplantation. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 11(12):2700–2707. https://doi.org/10.1111/j.1600-6143.2011.03717.x

    Article  CAS  Google Scholar 

  6. Juang JH, Hsu BR, Kuo CH (2005) Islet transplantation at subcutaneous and intramuscular sites. Transplant Proc 37(8):3479–3481. https://doi.org/10.1016/j.transproceed.2005.09.023

    Article  PubMed  Google Scholar 

  7. Sakata N, Aoki T, Yoshimatsu G, Tsuchiya H, Hata T, Katayose Y, Egawa S, Unno M (2014) Strategy for clinical setting in intramuscular and subcutaneous islet transplantation. Diabetes Metab Res Rev 30(1):1–10. https://doi.org/10.1002/dmrr.2463

    Article  PubMed  Google Scholar 

  8. Deng C, Vulesevic B, Ellis C, Korbutt GS, Suuronen EJ (2011) Vascularization of collagen-chitosan scaffolds with circulating progenitor cells as potential site for islet transplantation. Journal of controlled release : official journal of the Controlled Release Society 152(Suppl 1):e196–e198. https://doi.org/10.1016/j.jconrel.2011.09.005

    Article  CAS  Google Scholar 

  9. Jeong K-H, Park D, Lee Y-C (2017) Polymer-based hydrogel scaffolds for skin tissue engineering applications: a mini-review. J Polym Res 24(7):112–110. https://doi.org/10.1007/s10965-017-1278-4

    Article  CAS  Google Scholar 

  10. Wang Y, Xue Y, Wang J, Zhu Y, Wang X, Zhang X, Zhu Y, Liao J, Li X, Wu X, Chen W (2019) Biocompatible and photoluminescent carbon dots/hydroxyapatite/PVA dual-network composite hydrogel scaffold and their properties. J Polym Res 26(11):248–246. https://doi.org/10.1007/s10965-019-1907-1

    Article  CAS  Google Scholar 

  11. Bao X, Si X, Ding X, Duan L, Xiao C (2019) pH-responsive hydrogels based on the self-assembly of short polypeptides for controlled release of peptide and protein drugs. J Polym Res 26(12):278–210. https://doi.org/10.1007/s10965-019-1953-8

    Article  CAS  Google Scholar 

  12. Kim JS, Lim JH, Nam HY, Lim HJ, Shin JS, Shin JY, Ryu JH, Kim K, Kwon IC, Jin SM, Kim HR, Kim SJ, Park CG (2012) In situ application of hydrogel-type fibrin-islet composite optimized for rapid glycemic control by subcutaneous xenogeneic porcine islet transplantation. Journal of controlled release : official journal of the Controlled Release Society 162(2):382–390. https://doi.org/10.1016/j.jconrel.2012.07.018

    Article  CAS  Google Scholar 

  13. Vlahos AE, Cober N, Sefton MV (2017) Modular tissue engineering for the vascularization of subcutaneously transplanted pancreatic islets. Proc Natl Acad Sci U S A 114(35):9337–9342. https://doi.org/10.1073/pnas.1619216114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hou S, Lake R, Park S, Edwards S, Jones C, Jeong KJ (2018) Injectable macroporous hydrogel formed by enzymatic cross-linking of gelatin microgels. ACS Applied Bio Materials 1(5):1430–1439. https://doi.org/10.1021/acsabm.8b00380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang K, Han Q, Chen B, Zheng Y, Zhang K, Li Q, Wang J (2018) Antimicrobial hydrogels: promising materials for medical application. Int J Nanomedicine 13:2217–2263. https://doi.org/10.2147/ijn.s154748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qutachi O, Wright EJ, Bray G, Hamid OA, Rose F, Shakesheff KM, Delcassian D (2018) Improved delivery of PLGA microparticles and microparticle-cell scaffolds in clinical needle gauges using modified viscosity formulations. Int J Pharm 546(1–2):272–278. https://doi.org/10.1016/j.ijpharm.2018.05.025

    Article  CAS  PubMed  Google Scholar 

  17. Guo Q, Liu C, Hai B, Ma T, Zhang W, Tan J, Fu X, Wang H, Xu Y, Song C (2018) Chitosan conduits filled with simvastatin/Pluronic F-127 hydrogel promote peripheral nerve regeneration in rats. J Biomed Mater Res B Appl Biomater 106(2):787–799. https://doi.org/10.1002/jbm.b.33890

    Article  CAS  PubMed  Google Scholar 

  18. Almeida M, Magalhães M, Veiga F, Figueiras A (2017) Poloxamers, poloxamines and polymeric micelles: definition, structure and therapeutic applications in cancer. J Polym Res 25(1):31–14. https://doi.org/10.1007/s10965-017-1426-x

    Article  CAS  Google Scholar 

  19. Nguyen MK, Alsberg E (2014) Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog Polym Sci 39(7):1236–1265. https://doi.org/10.1016/j.progpolymsci.2013.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang S, Anderson MA, Ao Y, Khakh BS, Fan J, Deming TJ, Sofroniew MV (2014) Tunable diblock copolypeptide hydrogel depots for local delivery of hydrophobic molecules in healthy and injured central nervous system. Biomaterials 35(6):1989–2000. https://doi.org/10.1016/j.biomaterials.2013.11.005

    Article  CAS  PubMed  Google Scholar 

  21. Huettner N, Dargaville TR, Forget A (2018) Discovering cell-adhesion peptides in tissue engineering: beyond RGD. Trends Biotechnol 36(4):372–383. https://doi.org/10.1016/j.tibtech.2018.01.008

    Article  CAS  PubMed  Google Scholar 

  22. Lin J-Y, Lai P-L, Lin Y-K, Peng S, Lee L-Y, Chen C-N, Chu IM (2016) A poloxamer-polypeptide thermosensitive hydrogel as a cell scaffold and sustained release depot. Polym Chem 7(17):2976–2985. https://doi.org/10.1039/C5PY02067K

    Article  CAS  Google Scholar 

  23. Fukuda Y, Akagi T, Asaoka T, Eguchi H, Sasaki K, Iwagami Y, Yamada D, Noda T, Kawamoto K, Gotoh K, Kobayashi S, Mori M, Doki Y, Akashi M (2018) Layer-by-layer cell coating technique using extracellular matrix facilitates rapid fabrication and function of pancreatic beta-cell spheroids. Biomaterials 160:82–91. https://doi.org/10.1016/j.biomaterials.2018.01.020

    Article  CAS  PubMed  Google Scholar 

  24. Peng S, Wu C-W, Lin J-Y, Yang C-Y, Cheng M-H, Chu IM (2017) Promoting chondrocyte cell clustering through tuning of a poly(ethylene glycol)-poly(peptide) thermosensitive hydrogel with distinctive microarchitecture. Mater Sci Eng C Mater Biol Appl 76:181–189. https://doi.org/10.1016/j.msec.2017.02.130

    Article  CAS  PubMed  Google Scholar 

  25. Fang J, Mehlich A, Koga N, Huang J, Koga R, Gao X, Hu C, Jin C, Rief M, Kast J, Baker D, Li H (2013) Forced protein unfolding leads to highly elastic and tough protein hydrogels. Nat Commun 4:2974–2974. https://doi.org/10.1038/ncomms3974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oh HJ, Joo MK, Sohn YS, Jeong B (2008) Secondary structure effect of polypeptide on reverse thermal gelation and degradation of l/dl-poly(alanine)–Poloxamer–l/dl-poly(alanine) copolymers. Macromolecules 41(21):8204–8209. https://doi.org/10.1021/ma8014504

    Article  CAS  Google Scholar 

  27. Huang J, Hastings CL, Duffy GP, Kelly HM, Raeburn J, Adams DJ, Heise A (2013) Supramolecular hydrogels with reverse thermal gelation properties from (oligo)tyrosine containing block copolymers. Biomacromolecules 14(1):200–206. https://doi.org/10.1021/bm301629f

    Article  CAS  PubMed  Google Scholar 

  28. Roberts JJ, Elder RM, Neumann AJ, Jayaraman A, Bryant SJ (2014) Interaction of hyaluronan binding peptides with glycosaminoglycans in poly(ethylene glycol) hydrogels. Biomacromolecules 15(4):1132–1141. https://doi.org/10.1021/bm401524h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cai L, Dinh CB, Heilshorn SC (2014) One-pot synthesis of elastin-like polypeptide hydrogels with grafted VEGF-mimetic peptides. Biomaterials science 2(5):757–765. https://doi.org/10.1039/c3bm60293a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Webber MJ, Kessler JA, Stupp SI (2010) Emerging peptide nanomedicine to regenerate tissues and organs. J Intern Med 267(1):71–88. https://doi.org/10.1111/j.1365-2796.2009.02184.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weaver JD, Headen DM, Aquart J, Johnson CT, Shea LD, Shirwan H, García AJ (2017) Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. Sci Adv 3(6):e1700184–e1700184. https://doi.org/10.1126/sciadv.1700184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Singh NK, Lee DS (2014) In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. Journal of controlled release : official journal of the Controlled Release Society 193:214–227. https://doi.org/10.1016/j.jconrel.2014.04.056

    Article  CAS  Google Scholar 

  33. Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical applications. Polymers 3(3). https://doi.org/10.3390/polym3031215

  34. Klouda L (2015) Thermoresponsive hydrogels in biomedical applications: a seven-year update. Eur J Pharm Biopharm 97(Pt B):338–349. https://doi.org/10.1016/j.ejpb.2015.05.017

    Article  CAS  PubMed  Google Scholar 

  35. Marchioli G, Zellner L, Oliveira C, Engelse M, Ed K, Mano J, Karperien AA, Moroni L (2017) Layered PEGDA hydrogel for islet of Langerhans encapsulation and improvement of vascularization. J Mater Sci Mater Med 28(12):195. https://doi.org/10.1007/s10856-017-6004-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Young SA, Sherman SE, Cooper TT, Brown C, Anjum F, Hess DA, Flynn LE, Amsden BG (2018) Mechanically resilient injectable scaffolds for intramuscular stem cell delivery and cytokine release. Biomaterials 159:146–160. https://doi.org/10.1016/j.biomaterials.2018.01.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Chang Gung Memorial Hospital, Taiwan (CMRPG3F0711-3 and CMRPG3G1961) and Chang Gung Memorial Hospital and National Tsing Hua University Joint Research Program CGMH-NTHU 2019, Taiwan (108Q2505E1 and CORPG3I0031). We thank the Microscopy Core Laboratory, Chang Gung Memorial Hospital, Taiwan and the confocal imaging core at National Tsing Hua University, Taiwan (sponsored by MOST 104-2731-M-007-002) for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jyuhn-Huarng Juang or I-Ming Chu.

Ethics declarations

Conflict of interest

There is no conflict to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, HC., Chen, CY., Kao, CW. et al. In situ gelling-polypeptide hydrogel systems for the subcutaneous transplantation of MIN6 cells. J Polym Res 27, 64 (2020). https://doi.org/10.1007/s10965-020-2032-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-2032-x

Keywords

Navigation