Skip to main content

Advertisement

Log in

The effect of edge termination on Li+ ion adsorption of pristine and defected graphene sheets

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene-based nanomaterials have attracted great attention for energy storage application in supercapacitors and batteries, along with challenges and perspectives in the exciting field; however, the Li ion batteries with long cycling stability remain a major impediment. In order to enhance the Li+ ion adsorption, we employ density functional theory to investigate the adsorption of Li+ ion with hydrogen-, fluorine-, chlorine- and bromine-terminated pristine sheet and the corresponding Stone–Thrower–Wales and divacancy defect-incorporated graphene sheet. Our results reveal that fluorine termination enhances Li+ ion adsorption compared to H- and other halogen-terminated graphene sheets. On the other hand, Li+ ion adsorption energy is increased on introducing the fluorine termination in both pristine and defected graphene sheets, while Li+ ion adsorption is more in the divacancy-defected graphene. From the density of states analysis, the Fermi level shows 1.9 eV shift toward the valence band for fluorine termination in both pristine and defected graphene sheets. Fluorine termination is shown to have a significant variation in the valence band than the other halogen atoms, and hence, it offers efficient material energy conversion and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262. https://doi.org/10.1039/C1EE01598B

    Article  CAS  Google Scholar 

  2. Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 1:421–443. https://doi.org/10.1016/j.jpowsour.2013.11.103

    Article  CAS  Google Scholar 

  3. Spyrou K, Rudolf P (2014) An introduction to graphene. Functionalization of graphene. Wiley, pp. 1–20

  4. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534. https://doi.org/10.1126/science.1158877

    Article  CAS  Google Scholar 

  5. Novoselov KS, Geim AK, Morozov S, Jiang D, Katsnelson MI, Grigorieva I, Dubonos S, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197. https://doi.org/10.1038/nature04233

    Article  CAS  Google Scholar 

  6. Yoo E, Kim J, Hosono E, Zhou HS, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8:2277–2282. https://doi.org/10.1021/nl800957b

    Article  CAS  Google Scholar 

  7. Jariwala D, Srivastava A, Ajayan PM (2011) Graphene synthesis and band gap opening. J Nanosci Nanotechnol 11:6621–6641

    Article  CAS  Google Scholar 

  8. Xiang Z, Dai Q, Chen JF, Dai L (2016) Edge functionalization of graphene and two-dimensional covalent organic polymers for energy conversion and storage. Adv Mater 28:6253–6261. https://doi.org/10.1002/adma.201505788

    Article  CAS  Google Scholar 

  9. Boukhvalov DW, Katsnelson MI (2008) Chemical functionalization of graphene with defects. Nano Lett 8:4373–4379. https://doi.org/10.1021/nl802234n

    Article  CAS  Google Scholar 

  10. Elias DC, Nair RR, Mohiuddin TM, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323:610–613. https://doi.org/10.1126/science.1167130

    Article  CAS  Google Scholar 

  11. Ryu S, Han MY, Maultzsch J, Heinz TF, Kim P, Steigerwald ML, Brus LE (2008) Reversible basal plane hydrogenation of graphene. Nano Lett 8:4597–4602. https://doi.org/10.1021/nl802940s

    Article  CAS  Google Scholar 

  12. Robinson JT, Burgess JS, Junkermeier CE, Badescu SC, Reinecke TL, Perkins FK, Zalalutdniov MK, Baldwin JW, Culbertson JC, Sheehan PE, Snow ES (2010) Properties of fluorinated graphene films. Nano Lett 10:3001–3005. https://doi.org/10.1021/nl101437p

    Article  CAS  Google Scholar 

  13. Zboril R, Karlicky F, Bourlinos AB, Steriotis TA, Stubos AK, Georgakilas V, Safarova K, Jancik D, Trapalis C, Otyepka M (2010) Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to graphene. Small 6:2885–2891. https://doi.org/10.1002/smll.201001401

    Article  CAS  Google Scholar 

  14. Deng JP, Chen WH, Chiu SP, Lin CH, Wang BC (2014) Edge-termination and core-modification effects of hexagonal nanosheet graphene. Molecules 19:2361–2373. https://doi.org/10.3390/molecules19022361

    Article  CAS  Google Scholar 

  15. Cervantes-Sodi FE, Csanyi G, Piscanec S, Ferrari AC (2008) Edge-functionalized and substitutionally doped graphene nanoribbons: electronic and spin properties. Phys Rev B 77:165427. https://doi.org/10.1103/PhysRevB.77.165427

    Article  CAS  Google Scholar 

  16. Nair RR, Ren W, Jalil R, Riaz I, Kravets VG, Britnell L, Blake P, Schedin F, Mayorov AS, Yuan S, Katsnelson MI (2010) Fluorographene: a two-dimensional counterpart of Teflon. Small 6:2877–2884. https://doi.org/10.1002/smll.201001555

    Article  CAS  Google Scholar 

  17. Bhattacharya A, Bhattacharya S, Das GP (2011) Strain-induced band-gap deformation of H/F passivated graphene and h-BN sheet. Phys Rev B 84:075454. https://doi.org/10.1103/PhysRevB.84.075454

    Article  CAS  Google Scholar 

  18. Klintenberg M, Lebegue S, Katsnelson MI, Eriksson O (2010) Theoretical analysis of the chemical bonding and electronic structure of graphene interacting with Group IA and Group VIIA elements. Phys Rev B 81:085433. https://doi.org/10.1103/PhysRevB.81.085433

    Article  CAS  Google Scholar 

  19. Medeiros PV, Mascarenhas AJ, De Brito Mota F, De Castilho CM (2010) A DFT study of halogen atoms adsorbed on graphene layers. Nanotechnology 21:485701. https://doi.org/10.1088/0957-4484/21/48/485701

    Article  CAS  Google Scholar 

  20. Tachikawa H, Iyama T (2014) Structures and electronic states of fluorinated graphene. Solid State Sci 28:41–46. https://doi.org/10.1016/j.solidstatesciences.2013.12.014

    Article  CAS  Google Scholar 

  21. Zhu C, Yang G (2016) Insights from the adsorption of halide ions on graphene materials. ChemPhysChem 17:2482–2488. https://doi.org/10.1002/cphc.201600271

    Article  CAS  Google Scholar 

  22. Zhu C, Yun J, Wang Q, Yang G (2018) Adsorption of ion pairs onto graphene flakes and impacts of counterions during the adsorption processes. Appl Surf Sci 435:329–337. https://doi.org/10.1016/j.apsusc.2017.11.105

    Article  CAS  Google Scholar 

  23. Karlicky F, Kumara Ramanatha Datta K, Otyepka M, Zboril R (2013) Halogenated graphenes: rapidly growing family of graphene derivatives. ACS Nano 7:6434–6464. https://doi.org/10.1021/nn4024027

    Article  CAS  Google Scholar 

  24. Wehling TO, Katsnelson MI, Lichtenstein AI (2009) Impurities on graphene: midgap states and migration barriers. Phys Rev B 80:085428. https://doi.org/10.1103/PhysRevB.80.085428

    Article  CAS  Google Scholar 

  25. Xu J, Jeon IY, Seo JM, Dou S, Dai L, Baek JB (2014) Edge-selectively halogenated graphene nanoplatelets (XGnPs, X = Cl, Br, or I) prepared by ball-milling and used as anode materials for lithium-ion batteries. Adv Mater 26:7317–7323. https://doi.org/10.1002/adma.201402987

    Article  CAS  Google Scholar 

  26. Banhart F, Kotakoski J, Krasheninnikov AV (2010) Structural defects in graphene. ACS Nano 5:26–41. https://doi.org/10.1021/nn102598m

    Article  CAS  Google Scholar 

  27. Araujo PT, Terrones M, Dresselhaus MS (2012) Defects and impurities in graphene-like materials. Mater Today 15:98–109. https://doi.org/10.1016/S1369-7021(12)70045-7

    Article  CAS  Google Scholar 

  28. Liu L, Qing M, Wang Y, Chen S (2015) Defects in graphene: generation, healing, and their effects on the properties of graphene: a review. J Mater Sci Technol 31:599–606. https://doi.org/10.1016/j.jmst.2014.11.019

    Article  CAS  Google Scholar 

  29. Anithaa VS, Shankar R, Vijayakumar S (2017) Adsorption of Mn atom on pristine and defected graphene: a density functional theory study. J Mol Model 23:132. https://doi.org/10.1007/s00894-017-3300-5

    Article  CAS  Google Scholar 

  30. Anithaa VS, Shankar R, Vijayakumar S (2017) DFT-based investigation on adsorption of methane on pristine and defected graphene. Struct Chem 28:1935–1952. https://doi.org/10.1007/s11224-017-0988-x

    Article  CAS  Google Scholar 

  31. Ma J, Alfe D, Michaelides A, Wang E (2009) Stone–Wales defects in graphene and other planar sp2-bonded materials. Phys Rev B 80:033407. https://doi.org/10.1103/PhysRevB.80.033407

    Article  CAS  Google Scholar 

  32. Lalitha M, Lakshmipathi S (2017) Gas adsorption efficacy of graphene sheets functionalised with carboxyl, hydroxyl and epoxy groups in conjunction with Stone–Thrower–Wales (STW) and inverse Stone–Thrower–Wales (ISTW) defects. Phys Chem Phys Chem 19:30895–30913. https://doi.org/10.1039/C7CP06900F

    Article  CAS  Google Scholar 

  33. Xia J, Liu X, Zhou W, Wang F, Wu H (2016) Transformation between divacancy defects induced by an energy pulse in graphene. Nano Technol 27:274004

    Google Scholar 

  34. Datta D, Li J, Shenoy VB (2014) Defective graphene as a high-capacity anode material for Na-and Ca-ion batteries. ACS Appl Mater Interfaces 6:1788–1795. https://doi.org/10.1021/am404788e

    Article  CAS  Google Scholar 

  35. Sangavi S, Santhanamoorthi N, Vijayakumar S (2019) Density functional theory study on the adsorption of alkali metal ions with pristine and defected graphene sheet. Mol Phys 117:462–473. https://doi.org/10.1080/00268976.2018.1523480

    Article  CAS  Google Scholar 

  36. Datta D, Li J, Koratkar N, Shenoy VB (2014) Enhanced lithiation in defective graphene. Carbon 80:305–310. https://doi.org/10.1016/j.carbon.2014.08.068

    Article  CAS  Google Scholar 

  37. Liang M, Zhi L (2009) Graphene-based electrode materials for rechargeable lithium batteries. J Mater Chem 19:5871–5878. https://doi.org/10.1039/B901551E

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H (2009) Gaussian 09, revision a. 02, Gaussian. Inc., Wallingford, CT. 200: 28

  39. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241. https://doi.org/10.1007/s00214-007-0401-8

    Article  CAS  Google Scholar 

  40. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations: potentials for the transition metal atoms Sc to Hg. J Chem Phys 82(1985):270–283. https://doi.org/10.1063/1.448799

    Article  CAS  Google Scholar 

  41. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  Google Scholar 

  42. Kumar PS, Raghavendra V, Subramanian V (2016) Bader’s theory of atoms in molecules (AIM) and its applications to chemical bonding. J Chem Sci 128:1527–1536. https://doi.org/10.1007/s12039-016-1172-3

    Article  CAS  Google Scholar 

  43. Poater J, Fradera X, Duran M, Sola M (2003) The delocalization index as an electronic aromaticity criterion: application to a series of planar polycyclic aromatic hydrocarbons. Chem - A Eur J 9:400–406. https://doi.org/10.1002/chem.200390041

    Article  CAS  Google Scholar 

  44. Matito E, Duran M, Sola M (2005) The aromatic fluctuation index (FLU): A new aromaticity index based on electron delocalization. J Chem Phys 122:014109. https://doi.org/10.1063/1.1824895

    Article  CAS  Google Scholar 

  45. Zheng J, Ren Z, Guo P, Fang L, Fan J (2011) Diffusion of Li + ion on graphene: a DFT study. Appl Surf Sci 258:1651–1655. https://doi.org/10.1016/j.apsusc.2011.09.007

    Article  CAS  Google Scholar 

  46. Saleh G, Gatti C, Lo Presti L, Contreras-Garcia J (2012) Revealing non-covalent interactions in molecular crystals through their experimental electron densities. Chem A Eur J 18:15523–15536. https://doi.org/10.1002/chem.201201290

    Article  CAS  Google Scholar 

  47. Otero-de-la-Roza A, Johnson ER, Contreras-Garcia J (2012) Revealing non-covalent interactions in solids: NCI plots revisited. Phys Chem Chem Phys 14:12165–12172. https://doi.org/10.1039/C2CP41395G

    Article  CAS  Google Scholar 

  48. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Grap 14:33–38

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayakumar Subramaniam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4633 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanmugam, S., Nachimuthu, S. & Subramaniam, V. The effect of edge termination on Li+ ion adsorption of pristine and defected graphene sheets. J Mater Sci 55, 5920–5937 (2020). https://doi.org/10.1007/s10853-020-04438-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04438-4

Navigation