Skip to main content
Log in

A study of CNT fiber-reinforced multi-carbon resource-coated SiOx composite as anode materials

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To enhance the cycling and rate performances of SiO as an anode material, a CNT fiber-reinforced multi-carbon resource-coated SiOx composite (SiOx@MC/CNTs) prepared via a two-step pyrolysis process is evaluated. The SiOx@MC/CNTs composite exhibits a high initial coulombic efficiency of 74.6%, an initial charge capacity of 1400.5 mAh/g, and an initial discharge capacity of 1878.6 mAh/g. After 250 cycles, the composite shows a reversible capacity of 992.9 mAh/g, with a capacity retention rate of 70.9%. In addition, the composite obtains a good rate performance for the discharge capacities of 1381.3 mAh/g at 0.5 A/g and 1328.1 mAh/g at 1.0 A/g. The improved properties should be ascribed to the amorphous carbon layer and the CNT addition. The carbon layer prevents SiOx surface from direct contacting the electrolyte and adapts the volume change of SiOx particles during the repeated lithiation/delithiation process. The composite exhibits high conductivity of 4637.8 S/cm which is seven times higher than SiOx without the amorphous carbon layer and CNTs. This fabricating process can be a reference for the preparation of SiOx anode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zhang J, Liang Y, Zhou Q, Peng Y, Yang H (2015) Enhancing electrochemical properties of silicon-graphite anodes bythe introduction of cobalt for lithium-ion batteries. J Power Sources 290:71–79

    CAS  Google Scholar 

  2. Wang J, He Y, Fan F, Liu H, Xia S, Liu Y, Harris T, Li H, Huang J, Mao S, Zhu T (2013) Two-phase electrochemical lithiation in amorphous silicon. Nano Lett 13(2):709–715

    CAS  Google Scholar 

  3. Kasavajjula U, Wang C, Appleby A (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163(2):1003–1039

    CAS  Google Scholar 

  4. Choi S, Kwon T, Coskun A, Choi J (2017) Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357(6348):279–283

    CAS  Google Scholar 

  5. Lin L, Xu X, Chu C, Majeed M, Yang J (2016) Mesoporous amorphous silicon: a simple synthesis of a high-rate and long-life anode material for lithium-ion batteries. Angew Chem Int Ed Engl 55(45):14063–14066

    CAS  Google Scholar 

  6. Oumellal Y, Delpuech N, Mazouzi D, Dupre N, Gaubicher J, Moreau O, Soudan P, Lestriez B, Guyomard D (2011) The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries. J Mater Chem 21(17):6201–6208

    CAS  Google Scholar 

  7. DiLeo R, Ganter M, Thone M, Forney M, Staub J, Rogers R, Landi B (2013) Balanced approach to safety of high capacity silicon-germanium-carbon nanotube free-standing lithium ion battery anodes. Nano Energy 2(2):268–275

    CAS  Google Scholar 

  8. Fan Y, Zhou B, Wang J, Chen Z, Chang A (2015) Preparation and thermal-sensitive characteristic of copper doped n-type silicon material. J Semicond 36(1):013004

    Google Scholar 

  9. Liu Y, Okano M, Mukai T, Inoue K, Yanaglda M, Sakai T (2016) Improvement of thermal stability and safety of lithium ion battery using SiO anode material. J Power Sources 304:9–14

    CAS  Google Scholar 

  10. Yom J, Sun W, Cho S, Young W (2016) Improvement of irreversible behavior of SiO anodes for lithium ion batteries by a solid state reaction at high temperature. J Power Sources 311:159–166

    CAS  Google Scholar 

  11. Zhang X, Song P, Chen G, Shi L, Wu Y, Tao X, Liu H, Zhang D (2017) Coralloid-like nanostructured c-nSi/SiOx@Cy anodes for high performance lithium ion battery. ACS Appl Mater Interfaces 9(34):28464–28472

    Google Scholar 

  12. Goriparti S, Miele E, Angelis F, Fabrizio E, Zaccaria R, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257(3):421–443

    CAS  Google Scholar 

  13. Pan K, Zou F, Canova M, Zhu Y, Kim J (2019) Systematic electrochemical characterizations of Si and SiO anodes for highcapacity Li-Ion batteries. J Power Sources 413:20–28

    CAS  Google Scholar 

  14. Lee D, Ryou M, Lee J, Kim B, Lee Y, Kim H, Kong B, Park J, Choi J (2013) Nitrogen-doped carbon coating for a high-performance SiO anode in lithium-ion batteries. Electrochem Commun 34(5):98–101

    CAS  Google Scholar 

  15. Han J, Chen G, Yan T, Liu H, Shi L, An Z, Zhang J, Zhang D (2018) Creating graphene-like carbon layers on SiO anodes via a layer-by-layer strategy for lithium-ion battery. Chem Eng J 347:273–279

    CAS  Google Scholar 

  16. Lee J, Park S (2013) High-performance porous silicon monoxide anodes synthesized via metal-assisted chemical etching. Nano Energy 2(1):146–152

    CAS  Google Scholar 

  17. Feng L, Han X, Su X, Pang B, Luo Y, Hu F, Zhou M, Tao K, Xia Y (2018) Metal-organic frameworks derived porous carbon coated SiO composite as superior anode material for lithium ion batteries. J Alloys Compd 765:512–519

    CAS  Google Scholar 

  18. Hanai S, Ichikawa T, Phillipps M, Hirano A, Imanishi N, Yamamoto O, Takeda Y (2011) Improvement of cyclic behavior of a ball-milled SiO and carbon nanofiber composite anode for lithium-ion batteries. J Power Sources 196(22):9774–9779

    Google Scholar 

  19. Dou F, Shi L, Song P, Chen G, An J, Liu H, Zhang D (2018) Design of orderly carbon coatings for SiO anodes promoted by TiO2 toward high performance lithium-ion battery. Chem Eng J 338:488–495

    CAS  Google Scholar 

  20. Kim J, Sohn H, Kim H, Jeong G, Choi W (2007) Enhanced cycle performance of SiO–C composite anode for lithium-ion batteries. J Power Sources 170(2):456–459

    CAS  Google Scholar 

  21. Zhou Z, Xu Y, Hojamberdiev M, Liu W, Wang J (2010) Enhanced cycling performance of silicon/disordered carbon/carbon nanotubes composite for lithium ion batteries. J Alloys Compd 507(1):309–311

    CAS  Google Scholar 

  22. Zhang J, Gu J, He H, Li M (2017) High-capacity nano-Si@SiOx@C anode composites for lithium-ion batteries with good cyclic stability. J Solid State Electrochem 21(8):2259–2267

    CAS  Google Scholar 

  23. Xu J, Wang S, Pan D, Nie K, Zhang H, Qiu J, Lu J, Li H (2018) Conductivity test and analysis methods for research of lithium batteries. Energy Storage Sci Technol 7(5):926–955

    Google Scholar 

  24. Lee J, Lee J, Cho J, Kim J, Choi N, Park S (2012) Chemical-assisted thermal disproportionation of porous silicon monoxide into silicon-based multicomponent systems. J Angew Chem Int Ed Engl 51(11):2767–2771

    CAS  Google Scholar 

  25. Mccann J, Lim B, Ostermann R, Rycenga M, Marquez M, Xia Y (2007) Carbon nanotubes by electrospinning with a polyelectrolyte and vapor deposition polymerization. Nano Lett 7(8):2470–2474

    CAS  Google Scholar 

  26. Yin Y, Xin S, Wan L, Li C, Guo Y (2011) Electrospray synthesis of silicon/carbon nanoporous microspheres as improved anode materials for lithium-ion batteries. J Phys Chem C 115(29):14148–14154

    CAS  Google Scholar 

  27. Zhang J, Zhang L, Xue P, Zhang L, Zhang X, Hao W, Tian J, Shen M, Zheng H (2015) Silicon-nanoparticles isolated by in situ grown polycrystalline graphene hollow spheres for enhanced lithium-ion storage. J Mater Chem A 3(15):7810–7821

    CAS  Google Scholar 

  28. Xu T, Wang Q, Zhang J, Xie X, Xia B (2019) Green synthesis of dual carbon conductive network-encapsulated hollow SiOx spheres for superior lithium-ion batteries. Appl Mater Interfaces 11:19959–19967

    CAS  Google Scholar 

  29. Lv P, Zhao H, Gao C, Zhang T, Liu X (2015) Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries. Electrochim Acta 152:345–351

    CAS  Google Scholar 

  30. Zhang J, Zhang C, Liu Z, Zheng J, Zuo Y, Xue C, Li C, Cheng B (2017) High-performance ball-milled SiOx anodes for lithium ion batteries. J Power Sources 339:86–92

    CAS  Google Scholar 

  31. Woo J, Baek S, Park J, Jeong Y, Kim J (2015) Improved electrochemical performance of boron-doped SiO negative electrode materials in lithium-ion batteries. J Power Sources 299:25–31

    CAS  Google Scholar 

  32. Bai X, Wang B, Wang H, Jiang J (2016) In-situ synthesis of carbon fiber-supported SiOx as anode materials for lithium ion batteries. RSC Adv 6(39):32798–32803

    CAS  Google Scholar 

  33. Zhang J, Zhang X, Zhang C, Liu Z, Zhen J, Zuo Y, Xue C, Li C, Cheng B (2017) Facile and efficient synthesis of a microsized SiOx/C core-shell composite as anode material for lithium ion batteries. Energy Fuels 31:8758–8763

    CAS  Google Scholar 

  34. Yang X, Zhang P, Wen Z, Zhang L (2010) High performance silicon/carbon composite prepared by in situ carbon-thermal reduction for lithium ion batteries. J Alloys Compd 496(1):403–406

    CAS  Google Scholar 

  35. Li Z, He Q, He L, Hu P, Li W, Yan H, Peng X, Huang C, Mai L (2017) Self-sacrificed synthesis of carbon-coated SiOx nanowires for high capacity lithium ion battery anode. J Mater Chem A 5(8):4183–4418

    CAS  Google Scholar 

  36. Wang J, Zhou M, Tan G, Chen S, Wu F, Lu J, Amine K (2015) Encapsulating micro-nano Si/SiOx into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries. Nanoscale 7(17):8023–8034

    CAS  Google Scholar 

  37. Kim J, Nguyen C, Kim H, Song S (2014) Siloxane-capped amorphous nano-SiOx/graphite with improved dispersion ability and battery anode performance. RSC Adv 4(25):12878–12881

    CAS  Google Scholar 

  38. Qiang W, Huanhuan H, Jian W, Zhurui S (2017) Fabrication of SiOx ultra-fine nanoparticles by IR nanosecond laser ablation as anode materials for lithium ion battery. Appl Surf Sci 422:155–161

    CAS  Google Scholar 

  39. Chen H, Wang Z, Hou X, Fu L, Wang S, Hu X, Qin H, Wu Y, Ru Q, Liu X, Hu S (2017) Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode. Electrochim Acta 249:113–121

    CAS  Google Scholar 

  40. Woo J, Baek S (2017) A comparative investigation of different chemical treatments on SiO anode materials for lithium-ion batteries: towards long-term stability. RSC Adv 7(8):4501–4509

    CAS  Google Scholar 

  41. Xia M, Zhou Z, Su Y, Li Y, Wu Y, Zhou N, Zhang H, Xiong X (2019) Scalable synthesis SiO@C anode by fluidization thermal chemical vapor deposition in fluidized bed reactor for high-energy lithium-ion battery. Appl Surf Sci 467–468:298–308

    Google Scholar 

  42. Guo L, He H, Ren Y, Wang C, Li M (2018) Core-shell SiO@F-doped C composites with interspaces and voids as anodes for high-performance lithium-ion batteries. Chem Eng J 335:32–40

    CAS  Google Scholar 

  43. Liu G, Shen X, Ui K, Wang L, Kumagai N (2012) Influence of the binder types on the electrochemical characteristics of tin nanoparticle negative electrode for lithium secondary batteries. J Power Sources 217:108–113

    CAS  Google Scholar 

  44. Tan L, Tang Q, Chen X, Hu A, Deng W, Yang Y, Xu L (2014) Mesoporous LiFePO4 microspheres embedded homogeneously with 3D CNT conductive networks for enhanced electrochemical performance. Electrochim Acta 137:344–351

    CAS  Google Scholar 

  45. Tan G, Wu F, Li L, Chen R, Chen S (2013) Coralline glassy lithium phosphate-coated LiFePO4 cathodes with improved power capability for lithium ion batteries. J Phys Chem C 117(12):6013–6021

    CAS  Google Scholar 

  46. Zhao H, Wei Y, Qiao R, Zhu C, Zheng Z, Ling M, Jia Z, Bai Y, Fu Y, Lei J, Song X, Battaglia V, Yang W, Messersmith P, Liu G (2015) Conductive polymer binder for high-tap-density nanosilicon material for lithium-ion battery negative electrode application. Nano Lett 15(12):7927–7932

    CAS  Google Scholar 

  47. Gnanaraj J, Levi M, Levi E, Salitra G, Aurbach D, Fischer J, Claye A (2001) Comparison between the electrochemical behavior of disordered carbons and graphite electrodes in connection with their structure. J Electrochem Soc 148:A525–A536

    CAS  Google Scholar 

  48. Du F, Wang K, Fu W, Gao P, Wang J, Yang J, Chen J (2013) A graphene-wrapped silver–porous silicon composite with enhanced electrochemical performance for lithium-ion batteries. J Mater Chem A 1(43):13648–13654

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Special Fund Project of Guangdong Academy of Science (No. 2019GDASYL-0501008), the Scientific and Technological Plan of Guangzhou (No. 201802020029), the Natural Science Foundation of Guangdong Province (No. 2014A030308015), the Scientific and Technological Plan of Guangdong Province (Nos. 2015B010116002, 2017B090907026, 2017A070701022) and GDAS’ Project of Science and Technology Development (Nos. 2017GDASCX-0110, 2018GDASCX-0110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Tang, R., Yuan, B. et al. A study of CNT fiber-reinforced multi-carbon resource-coated SiOx composite as anode materials. J Mater Sci 55, 6005–6016 (2020). https://doi.org/10.1007/s10853-020-04421-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04421-z

Navigation