Skip to main content

Advertisement

Log in

Down-regulation of lncRNA BLACAT1 inhibits ovarian cancer progression by suppressing the Wnt/β-catenin signaling pathway via regulating miR-519d-3p

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ovarian cancer has the highest mortality in gynecologic malignancies. LncRNA BLACAT1 serves crucial functions in various cancers, but its role in ovarian cancer has not been investigated. In this article, our team explored the role and the potential regulatory mechanism of BLACAT1 in ovarian cancer. Quantitative RT-PCR showed that BLACAT1 was aberrantly up-regulated in ovarian cancer tissues compared with normal tissues. In vitro, BLACAT1 knockdown induced cell cycle arrest and inhibited the proliferation, migration and invasion of ovarian cancer cells using flow cytometry, MTT and EdU assays, wound healing assay and transwell assay, respectively. Luciferase assay verified the binding relationship between microRNA-519d-3p and lncRNA BLACAT1, and BLACAT1 negatively regulated the expression of miR-519d-3p. We also found that miR-519d-3p overexpression could inhibit ovarian cancer cells proliferation, migration and invasion. Further, Western blot demonstrated that the expression of RPS15A and nuclear β-catenin expression was markedly reduced by BLACAT1 knockdown, and cytoplasmic β-catenin level was not obviously affected. In vivo, BLACAT1 knockdown inhibited the tumor growth, and immunohistochemistry showed that ki67 expression was decreased by BLACAT1 suppression. Inhibition of BLACAT1 was sufficient to down-regulate the expression of RPS15A and nuclear β-catenin but did not cause an obvious change in cytoplasmic β-catenin expression. Taken together, BLACAT1 knockdown inhibited the progression of ovarian cancer by suppressing the Wnt/β-catenin signaling pathway via regulating miR-519d-3p. Our work provided a proper understanding of the critical roles of BLACAT1 in ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2014) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–386. https://doi.org/10.1002/ijc.29210

    Article  CAS  PubMed  Google Scholar 

  2. Morice P (2019) Mucinous ovarian carcinoma. N Engl J Med 380:1256–1266. https://doi.org/10.1056/NEJMra1813254

    Article  CAS  PubMed  Google Scholar 

  3. Hennessy BT, Coleman RL (2009) Ovarian cancer. Lancet 374:1371–1382. https://doi.org/10.1016/S0140-6736(09)61338-6

    Article  CAS  PubMed  Google Scholar 

  4. Miller KD, Siegel RL, Lin CC et al (2016) Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 66:271–289. https://doi.org/10.3322/caac.21349

    Article  PubMed  Google Scholar 

  5. Yang G, Lu X, Yuan L (2014) LncRNA: a link between RNA and cancer. Biochim Biophys Acta 1839:1097–1109. https://doi.org/10.1016/j.bbagrm.2014.08.012

    Article  CAS  PubMed  Google Scholar 

  6. Gong J, Xu X, Zhang X, Zhou Y (2019) LncRNA MIR4435-2HG is a potential early diagnostic marker for ovarian carcinoma. Acta Biochim Biophys Sin 51:1–7. https://doi.org/10.1093/abbs/gmz085

    Article  Google Scholar 

  7. Yan H, Li H, Silva MA et al (2019) LncRNA FLVCR1-AS1 mediates miR-513 / YAP1 signaling to promote cell progression, migration, invasion and EMT process in ovarian cancer. Exp Clin Cancer Res 35:1–13

    Google Scholar 

  8. He W, Cai Q, Sun F et al (2013) Linc-UBC1 physically associates with polycomb repressive complex 2 (PRC2) and acts as a negative prognostic factor for lymph node metastasis and survival in bladder cancer. Biochim Biophys Acta 1832:1528–1537. https://doi.org/10.1016/j.bbadis.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  9. Chen X, Dai M, Zhu H et al (2017) Evaluation on the diagnostic and prognostic values of long non-coding RNA BLACAT1 in common types of human cancer. Mol Cancer 16:1–5. https://doi.org/10.1186/s12943-017-0728-2

    Article  CAS  Google Scholar 

  10. Hu X, Liu Y, Du Y et al (2019) Long non-coding RNA BLACAT1 promotes breast cancer cell proliferation and metastasis by miR-150-5p/CCR2. Cell Biosci 9:1–9. https://doi.org/10.1186/s13578-019-0274-2

    Article  Google Scholar 

  11. Wang CH, Li YH, Tian HL et al (2018) Long non-coding RNA BLACAT1 promotes cell proliferation, migration and invasion in cervical cancer through activation of Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci 22:3002–3009

    PubMed  Google Scholar 

  12. Huang FX, Chen HJ, Zheng FX et al (2019) LncRNA BLACAT1 is involved in chemoresistance of non-small cell lung cancer cells by regulating autophagy. Int J Oncol 54:339–347. https://doi.org/10.3892/ijo.2018.4614

    Article  CAS  PubMed  Google Scholar 

  13. Wu X, Zheng Y, Han B, Dong X (2018) Long noncoding RNA BLACAT1 modulates ABCB1 to promote oxaliplatin resistance of gastric cancer via sponging miR-361. Biomed Pharmacother 99:832–838. https://doi.org/10.1016/j.biopha.2018.01.130

    Article  CAS  Google Scholar 

  14. Su J, Zhang E, Han L et al (2017) Long noncoding RNA BLACAT1 indicates a poor prognosis of colorectal cancer and affects cell proliferation by epigenetically silencing of p15. Cell Death Dis 8:e2665–e2669. https://doi.org/10.1038/cddis.2017.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dong Z, Wang Y (2019) LncRNA BLACAT1 accelerates the proliferation and migration of osteosarcoma cells through regulating STAT3. Pathol Res Pract 215:571–579. https://doi.org/10.1016/j.prp.2019.01.017

    Article  CAS  PubMed  Google Scholar 

  16. Carlo M, Croce MD (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714. https://doi.org/10.1038/nrg2634.Causes

    Article  Google Scholar 

  17. Catto JWF, Alcaraz A, Bjartell AS et al (2011) MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur Urol 59:671–681. https://doi.org/10.1016/j.eururo.2011.01.044

    Article  CAS  PubMed  Google Scholar 

  18. Krek A, Grün D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500. https://doi.org/10.1038/ng1536

    Article  CAS  PubMed  Google Scholar 

  19. Yue H, Tang B, Zhao Y et al (2017) MIR-519d suppresses the gastric cancer epithelial-mesenchymal transition via Twist1 and inhibits Wnt/β-catenin signaling pathway. Am J Transl Res 9:3654–3664

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yan CQ, Lu YH, Tang SM, Fan WX (2018) MiR-519d inhibits prostate cancer cell proliferation, cycle and invasion via targeting NRBP1. Eur Rev Med Pharmacol Sci 22:2985–2990. https://doi.org/10.26355/eurrev_201805_15054

    Article  PubMed  Google Scholar 

  21. Ding J, Huang F, Wu G et al (2015) MiR-519d-3p suppresses invasion and migration of trophoblast cells via targeting MMP-2. PLoS ONE 10:1–12. https://doi.org/10.1371/journal.pone.0120321

    Article  CAS  Google Scholar 

  22. Liang J, Liu Y, Zhang L et al (2019) Overexpression of microRNA-519d-3p suppressed the growth of pancreatic cancer cells by inhibiting ribosomal protein S15A-mediated Wnt/β-catenin signaling. Chem Biol Interact 304:1–9. https://doi.org/10.1016/j.cbi.2019.02.026

    Article  CAS  PubMed  Google Scholar 

  23. Guo P, Wang Y, Dai C et al (2018) Ribosomal protein S15a promotes tumor angiogenesis via enhancing Wnt/β-catenin-induced FGF18 expression in hepatocellular carcinoma. Oncogene 37:1220–1236. https://doi.org/10.1038/s41388-017-0017-y

    Article  CAS  PubMed  Google Scholar 

  24. Torre LA, Bray F, Siegel RL, Ferlay J, Joannie Lortet-Tieulent AJ (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108. https://doi.org/10.3322/canjclin.55.2.74

    Article  Google Scholar 

  25. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: Insights into functions. Nat Rev Genet 10:155–159. https://doi.org/10.1038/nrg2521

    Article  CAS  PubMed  Google Scholar 

  26. Lu W, Zhang H, Niu Y et al (2017) Long non-coding RNA linc00673 regulated non-small cell lung cancer proliferation, migration, invasion and epithelial mesenchymal transition by sponging miR-150-5p. Mol Cancer 16:1–14. https://doi.org/10.1186/s12943-017-0685-9

    Article  CAS  Google Scholar 

  27. Chen X, Zeng K, Xu M et al (2018) SP1-induced lncRNA-ZFAS1 contributes to colorectal cancer progression via the miR-150-5p/VEGFA axis. Cell Death Dis 9:982. https://doi.org/10.1038/s41419-018-0962-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pang Y, Mao H, Shen L et al (2014) MiR-519d represses ovarian cancer cell proliferation and enhances cisplatin-mediated cytotoxicity in vitro by targeting XIAP. Onco Targets Ther 7:587–597. https://doi.org/10.2147/OTT.S60289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hou R, Jiang L, Yang Z et al (2016) Rab14 is overexpressed in ovarian cancers and promotes ovarian cancer proliferation through Wnt pathway. Tumor Biol 37:16005–16013. https://doi.org/10.1007/s13277-016-5420-4

    Article  CAS  Google Scholar 

  30. Liu H, Shi H, Fan Q, Sun X (2016) Cyclin Y regulates the proliferation, migration, and invasion of ovarian cancer cells via Wnt signaling pathway. Tumor Biol 37:10161–10175. https://doi.org/10.1007/s13277-016-4818-3

    Article  CAS  Google Scholar 

  31. Shang S, Hua F, Hu ZW (2017) The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 8:33972–33989. https://doi.org/10.18632/oncotarget.15687

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gatcliffe TA, Monk BJ, Planutis K (2008) Wnt signaling in ovarian tumorigenesis. Int J Gynecol Cancer 18:954–962. https://doi.org/10.1038/jid.2014.371

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was not funded.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: TS; Methodology: HY; Formal analysis and investigation: HY, YQ, XW and JG; Writing original draft preparation: HY; Writing-review and editing: TS.

Corresponding author

Correspondence to Tie-mei Shi.

Ethics declarations

Conflict of interest

All authors have read this manuscript and authorized the submission for publication. All authors declare that there is no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were approved by the Ethics Committee of Shengjing Hospital of China Medical University (Reference Number: 2019PS641K) and in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All procedures performed in this study involving animals were in conformity with the Guide for the Care and Use of Laboratory Animals and approved by the Ethical Committee of Shengjing Hospital of China Medical University (Reference Number: 2019PS670K).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Qi, Y., Wang, Xl. et al. Down-regulation of lncRNA BLACAT1 inhibits ovarian cancer progression by suppressing the Wnt/β-catenin signaling pathway via regulating miR-519d-3p. Mol Cell Biochem 467, 95–105 (2020). https://doi.org/10.1007/s11010-020-03704-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03704-y

Keywords

Navigation