Skip to main content
Log in

The Effect of High Volume Power Training on Repeated High-Intensity Performance and the Assessment of Repeat Power Ability: A Systematic Review

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

High volume power training (HVPT) involves high volumes of high-velocity resistance training, with the aim to improve repeated high-intensity efforts (RHIEs). Repeat power ability (RPA) is the ability to repeatedly produce maximal or near maximal efforts. Assessments of RPA using external loading may determine the ability to perform repeat RHIEs typical of many sports and, therefore, provide useful information on the effectiveness of training.

Objectives

(1) Identify the different HVPT protocols; (2) examine the acute responses and chronic adaptations to different HVPT protocols; (3) identify different lower body RPA assessment protocols and highlight similarities, differences and potential limitations between each protocol, and; (4) describe the reliability and validity of RPA assessments.

Methods

An electronic search was performed using SPORTDiscus, PubMed, CINAHL and Embase for studies utilising HVPT protocols and assessments of RPA. Eligible studies included peer-reviewed journal articles published in English.

Results

Twenty studies met the inclusion criteria of the final review. Of the eight longitudinal studies, three were rated as fair and five were rated as poor methodological quality, respectively. In contrast, all 12 cross-sectional studies were considered to have a low risk of bias. Preliminary evidence suggests that HVPT can enhance RHIE, RPA, anaerobic capacity, anaerobic power and aerobic performance. HVPT generally consists of 2–3 sessions per week, utilising loads of 30–40% 1 repetition maximum (RM), for 3–5 sets of 10–20 repetitions, with inter-set rest periods of 2–3 min. RPA assessments can be valid and reliable and may provide useful information on an athlete’s ability to perform RHIE and the success of HVPT programmes.

Conclusions

HVPT can be used to improve a number of physical qualities including RPA and RHIE; while a variety of RPA assessments provide valid and reliable information regarding the athlete’s ability to perform RHIEs. Considering the heterogeneity in the HVPT protocols currently used and the relatively low volume and quality of longitudinal publications in this area, further studies are needed to identify the effects of a variety of HVPT methods on RPA, RHIE and other performance outcomes and to identify the most valid and reliable RPA outcomes to use in such studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability statement

Data sharing is not applicable to this article as no datasets were generated or analysed during the current review.

References

  1. Spencer M, Lawrence S, Rechichi C, Bishop D, Dawson B, Goodman C. Time-motion analysis of elite field hockey, with special reference to repeated-sprint activity. J Sports Sci. 2013;2004(22):843–50.

    Google Scholar 

  2. Austin DJ, Gabbett TJ, Jenkins DJ. Repeated high-intensity exercise in a professional rugby league. J Strength Cond Res. 2011;25(7):1898–904.

    PubMed  Google Scholar 

  3. Mohr M, Krustrup P, Bangsbo J. Match performance of high-standard soccer players with special reference to development of fatigue. J Sports Sci. 2003;21(7):519–28.

    PubMed  Google Scholar 

  4. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part II: anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43(10):927–54.

    PubMed  Google Scholar 

  5. Bradley PS, Sheldon W, Wooster B, Olsen P, Boanas P, Krustrup P. High-intensity running in English FA Premier League soccer matches. J Sports Sci. 2009;27(2):159–68.

    PubMed  Google Scholar 

  6. Gabbett TJ. Quantifying the physical demands of collision sports. J Strength Cond Res. 2013;27(8):2319–22.

    PubMed  Google Scholar 

  7. Carling C, Le Gall F, Dupont G. Analysis of repeated high-intensity running performance in professional soccer. J Sports Sci. 2012;30(4):325–36.

    PubMed  Google Scholar 

  8. Häkkinen K, Alén M, Komi PV. Changes in isometric force- and relaxation-time, electromyographic and muscle fibre characteristics of human skeletal muscle during strength training and detraining. Acta Physiol Scand. 1985;125(4):573–85.

    PubMed  Google Scholar 

  9. Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36(4):674–88.

    PubMed  Google Scholar 

  10. González-Badillo JJ, Sánchez-Medina L. Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med. 2010;31(05):347–52.

    PubMed  Google Scholar 

  11. Kawamori N, Haff GG. The optimal training load for the development of muscular power. J Strength Cond Res. 2004;18(3):675.

    PubMed  Google Scholar 

  12. Cormie P, McGuigan M, Newton RU. Developing maximal neuromuscular power part 2—training considerations for improving maximal power production. Sports Med. 2011;24(1):573–80.

    Google Scholar 

  13. Haff GG, Nimphius S. Training principles for power. Strength Cond J. 2012;34(6):2–12.

    Google Scholar 

  14. Moir GL, Munford SN, Moroski LL, Davis SE. The effects of ballistic and nonballistic bench press on mechanical variables. J Strength Cond Res. 2018;32(12):3333–9.

    PubMed  Google Scholar 

  15. Cormie P, McGuigan MR, Newton RU. Adaptations in athletic performance after ballistic power versus strength training. Med Sci Sports Exerc. 2010;42(8):1582–98.

    PubMed  Google Scholar 

  16. Baker DG, Newton RU. Change in power output across a high-repetition set of bench throws and jump squats in highly trained athletes. J Strength Cond Res. 2007;21(4):1007.

    PubMed  Google Scholar 

  17. Johnston M, Cook CJ, Crewther BT, Drake D, Kilduff LP. Neuromuscular, physiological and endocrine responses to a maximal speed training session in elite games players. Eur J Sport Sci. 2015;15(6):550–6.

    PubMed  Google Scholar 

  18. Kilduff LP, Bevan H, Owen N, Kingsley MI, Bunce P, Bennett M, et al. Optimal loading for peak power output during the hang power clean in professional rugby players. Int J Sports Physiol Perform. 2007;2(3):260–9.

    PubMed  Google Scholar 

  19. Hansen KT, Cronin JB, Newton MJ. The effect of cluster loading on force, velocity, and power during ballistic jump squat training. Int J Sports Physiol Perform. 2011;6(4):455–68.

    PubMed  Google Scholar 

  20. Valverde-Esteve T, Garcia-Manso Juan M, Pablos-Monzo A, Pablos-Abella C, Martin-Gonzalez Juan M, Rodriguez-Ruiz D. Effect of the inter-repetition rest length in the capacity to repeat peak power output. Br J Sports Med. 2013;47(10):33.

    Google Scholar 

  21. Haff GG, Whitley A, McCoy L, O’Bryant H, KIlgore J, Pierce K, et al. Effects of different set configurations on barbell velocity and displacement during a clean pull. J Strength Cond Res. 2003;17(1):95–103.

    PubMed  Google Scholar 

  22. Tufano JJ, Conlon JA, Nimphius S, Brown LE, Seitz LB, Williamson BD, et al. Maintenance of velocity and power with cluster sets during high-volume back squats. Int J Sports Physiol Perform. 2016;11(7):885–92.

    PubMed  Google Scholar 

  23. Ronnestad BR, Mujika I. Optimizing strength training for running and cycling endurance performance: a review. Scand J Med Sci Sports. 2014;24(4):603–12.

    CAS  PubMed  Google Scholar 

  24. Morales-Artacho AJ, Padial P, García-Ramos A, Pérez-Castilla A, Feriche B. Influence of a cluster set configuration on the adaptations to short-term power training. J Strength Cond Res. 2018;32(4):930–7.

    PubMed  Google Scholar 

  25. Schuster J, Howells D, Robineau J, Natera A, Lumley N, Gabbet T, et al. Physical-preparation recommendations for elite rugby sevens performance. Int J Sports Physiol Perform. 2018;13(3):255–67.

    PubMed  Google Scholar 

  26. Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;2012(5):1077–84.

    Google Scholar 

  27. Kraemer WJ, Vescovi JD, Dixon P. The physiological basis of wrestling. Strength Cond J. 2004;26(2):10–5.

    Google Scholar 

  28. Bompa TO. Periodization training for sports. Champaign: Human Kinetics; 1999.

    Google Scholar 

  29. Patterson C, Raschner C, Platzer H-P. The 2.5-minute loaded repeated jump test. J Strength Cond Res. 2014;28(9):2611–20.

    PubMed  Google Scholar 

  30. Ziemann E, Grzywacz T, Tuszcyk M, Laskowski R, Olek R, Gibson A. Aerobic and anaerobic changes with high-intensity interval training in active college-aged men. J Strength Cond Res. 2011;25(4):1104–12.

    PubMed  Google Scholar 

  31. Astorino TA, Allen RP, Roberson DW, Jurancich M. Effect of high-intensity interval training on cardiovascular function, VO2max, and muscular force. J Strength Cond Res. 2012;26(1):138–45.

    PubMed  Google Scholar 

  32. Aziz AR, Chia M, Teh KC. The relationship between maximal oxygen uptake and repeated sprint performance indices in field hockey and soccer players. J Sports Med Phys Fit. 2000;40(3):195–200.

    CAS  Google Scholar 

  33. Aziz AR, Mukherjee S, Chia MYK, Teh KC. Relationship between measured maximal oxygen uptake and aerobic endurance performance with running repeated sprint ability in young elite soccer players. J Sports Med Phys Fitness. 2007;47(4):401–7.

    CAS  PubMed  Google Scholar 

  34. Balsom PD, Seger JY, Sjödin B, Ekblom B. Maximal-intensity intermittent exercise: effect of recovery duration. Int J Sports Med. 1992;13(7):528–33.

    CAS  PubMed  Google Scholar 

  35. Thébault N, Léger LA, Passelergue P. Repeated-sprint ability and aerobic fitness. J Strength Cond Res. 2011;25(10):2857–65.

    PubMed  Google Scholar 

  36. da Silva JF, Guglielmo LGA, Bishop D. Relationship between different measures of aerobic fitness and repeated-sprint ability in elite soccer players. J Strength Cond Res. 2010;24(8):2115–21.

    PubMed  Google Scholar 

  37. Sanders GJ, Turner Z, Boos B, Peacock CA, Peveler W, Lipping A. Aerobic capacity is related to repeated sprint ability with sprint distances less than 40 meters. Int J Exerc Sci. 2017;10(2):197–204.

    PubMed  PubMed Central  Google Scholar 

  38. Pyne DB, Saunders PU, Montgomery PG, Hewitt AJ, Sheehan K. Relationships between repeated sprint testing, speed, and endurance. J Strength Cond Res. 2008;22(5):1633–7.

    PubMed  Google Scholar 

  39. Bishop D, Lawrence S, Spencer M. Predictors of repeated-sprint ability in elite female hockey players. J Sci Med Sport. 2003;6(2):199–209.

    CAS  PubMed  Google Scholar 

  40. Gabbett TJ, Wheeler AJ. Predictors of repeated high-intensity-effort ability in rugby league players. Int J Sports Physiol Perform. 2015;10(6):718–24.

    PubMed  Google Scholar 

  41. Hill-Haas S, Bishop D, Dawson B, Goodman C, Edge J. Effects of rest interval during high-repetition resistance training on strength, aerobic fitness, and repeated-sprint ability. J Sports Sci. 2007;25(6):619–28.

    CAS  PubMed  Google Scholar 

  42. Edge J, Hill-Haas S, Goodman C, Bishop D. Effects of resistance training on H+ regulation, buffer capacity, and repeated sprints. Med Sci Sports Exerc. 2006;38(11):2004–11.

    PubMed  Google Scholar 

  43. Kraemer WJ, Newton RU. Training for muscular power. Phys Med Rehabil Clin N Am. 2000;11(2):341–68 (vii).

    CAS  PubMed  Google Scholar 

  44. Tran T, Faulkinbury K, Stieg J, Khamoui AV, Uribe BP, Dabbs NC, et al. Effect Of 10 repetitions of box jumps and depth jumps on peak ground reaction force. J Strength Cond Res. 2010;2(24):1.

    Google Scholar 

  45. Comfort P, Udall R, Jones P. The effect of loading on kinematic and kinetic variables during the midthigh clean pull. J Strength Cond Res. 2012;26(5):1208–14.

    PubMed  Google Scholar 

  46. Franchini E, Del Vecchio FB, Matsushigue KA, Artioli GG. Physiological profiles of elite judo athletes. Sports Med. 2011;41(2):147–66.

    PubMed  Google Scholar 

  47. Ames CP, Blondel B, Scheer JK, Schwab FJ, Le Huec J-C, Massicotte EM, et al. Cervical radiographical alignment. Spine (Phila Pa 1976). 2013;38(9):S149–60.

    Google Scholar 

  48. Spiteri T, Cochrane J, Hart N, Haff GG, Nimphius S. Effect of strength on plant foot kinetics and kinematics during a change of direction task. Eur J Sport Sci. 2013;13(6):646–52.

    PubMed  Google Scholar 

  49. Morin JB, Slawinski J, Dorel S, de Villareal ES, Couturier A, Samozino P, et al. Acceleration capability in elite sprinters and ground impulse: push more, brake less? J Biomech. 2015;48(12):3149–54.

    PubMed  Google Scholar 

  50. Gonzalo-Skok O, Tous-Fajardo J, Arjol-Serrano JL, Suarez-Arrones L, Casajús JA, Mendez-Villanueva A. Improvement of repeated-sprint ability and horizontal-jumping performance in elite young basketball players with low-volume repeated-maximal-power training. Int J Sports Physiol Perform. 2016;11(4):464–73.

    PubMed  Google Scholar 

  51. Hindle BR, Lorimer A, Winwood P, Keogh JWL. A systematic review of the biomechanical research methods used in strongman studies. Sport Biomech. 2020;19(1):90–119.

    Google Scholar 

  52. Davids E, Roman N. A systematic review of the relationship between parenting styles and children’s physical activity. Afr J Phys Health Educ Recreat Dance. 2014;20:228–46.

    Google Scholar 

  53. Roman NV, Frantz JM. The prevalence of intimate partner violence in the family: a systematic review of the implications for adolescents in Africa. Fam Pract. 2013;30(3):256–65.

    PubMed  Google Scholar 

  54. Vandenbroucke JP, von Elm E, Altman DG, Gøtzsche PC, Mulrow CD, Pocock SJ, et al. Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. PLoS Med. 2007;4(10):e297.

    PubMed  PubMed Central  Google Scholar 

  55. DeMorton N. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55(2):129–33.

    Google Scholar 

  56. Kamper S, Mosley A, Herbert R, Maher C, Elkins M, Sherrington C. 15 years of tracking physiotherapy evidence on PEDro, where are we now? Br J Sports Med. 2015;49(14):907–9.

    PubMed  Google Scholar 

  57. Sherrington C, Moseley AM, Herbert RD, Elkins MR, Maher CG. Ten years of evidence to guide physiotherapy interventions: Physiotherapy Evidence Database (PEDro). Br J Sports Med. 2010;44(12):836–7.

    PubMed  Google Scholar 

  58. Bosco C, Cotelli F, Bonomi R, Mognoni P, Roi GS. Seasonal fluctuations of selected physiological characteristics of elite alpine skiers. Eur J Appl Physiol Occup Physiol. 1994;69(1):71–4.

    CAS  PubMed  Google Scholar 

  59. Mosey T. Power endurance and strength training methods of the Australian lightweight men’s four. J Aust Strength Cond. 2011;19(1):9–19.

    Google Scholar 

  60. Apanukul S, Suwannathada S, Chaninchai I. The effects of combined weight and pneumatic training to enhance power endurance in tennis players. J Exerc Physiol. 2015;18(2):8–16.

    Google Scholar 

  61. Balsalobre-Fernández C, Tejero-González CM, Del Campo-Vecino J, Alonso-Curiel D. The effects of a maximal power training cycle on the strength, maximum power, vertical jump height and acceleration of high-level 400-meter hurdlers. J Hum Kinet. 2013;36(1):119–26.

    PubMed  PubMed Central  Google Scholar 

  62. Patterson C, Platzer H, Raschner C. The 2 minute loaded repeated jump test: longitudinal anaerobic testing in elite alpine ski racers. J Sports Sci Med. 2019;18(1):128–36.

    PubMed  PubMed Central  Google Scholar 

  63. Romero-Arenas S, Ruiz R, Vera-Ibanez A, Colomer-Poveda D, Guadalupe-Grau A, Marquez G. Neuromuscular and cardiovascular adaptations in response to high-intensity interval power training. J Strength Cond Res. 2018;32(1):130–8.

    PubMed  Google Scholar 

  64. Alemany JA, Pandorf CE, Montain SJ, Castellani JW, Tuckow AP, Nindl BC. Reliability assessment of ballistic jump squats and bench throws. J Strength Cond Res. 2005;19(1):33.

    PubMed  Google Scholar 

  65. Volek JS, Kraemer WJ, Bush JA, Boetes M, Incledon T, Clark KL, et al. Creatine supplementation enhances muscular performance during high- intensity resistance exercise. J Am Diet Assoc. 1997;97(7):765–70.

    CAS  PubMed  Google Scholar 

  66. Date AS, Simonson SR, Ransdell LB, Gao Y. Lactate response to different volume patterns of power clean. J Strength Cond Res. 2013;27(3):604–10.

    PubMed  Google Scholar 

  67. Conchola EC, Thiele RM, Palmer TB, Smith DB, Thompson BJ. Acute postexercise time course responses of hypertrophic vs. power-endurance squat exercise protocols on maximal and rapid torque of the knee extensors. J Strength Cond Res. 2015;29(5):1285–94.

    PubMed  Google Scholar 

  68. Fry AC, Kudrna RA, Falvo MJ, Bloomer RJ, Moore CA, Schilling BK, et al. Kansas squat test: a reliable indicator of short-term anaerobic power. J Strength Cond Res. 2014;28(3):630–5.

    PubMed  Google Scholar 

  69. García-Ramos A, Nebot V, Padial P, Valverde-Esteve T, Pablos-Monzó A, Feriche B. Effects of short inter-repetition rest periods on power output losses during the half squat exercise. Isokinet Exerc Sci. 2016;24(4):323–30.

    Google Scholar 

  70. Hatfield DL, Kraemer WJ, Volek JS, Rubin MR, Grebien B, Gómez AL, et al. The effects of carbohydrate loading on repetitive jump squat power performance. J Strength Cond Res. 2006;20(1):167.

    PubMed  Google Scholar 

  71. Hester GM, Conchola EC, Thiele RM, DeFreitas JM. Power output during a high-volume power-oriented back squat protocol. J Strength Cond Res. 2014;28(10):2801–5.

    PubMed  Google Scholar 

  72. Mackey CS, Thiele RM, Schnaiter-Brasche J, Smith DB, Conchola EC. Acute recovery responses of maximal velocity and angular acceleration of the knee extensors following back squat exercise. Isokinet Exerc Sci. 2018;26(4):281–90.

    Google Scholar 

  73. Nunes JA, Crewther BT, Ugrinowitsch C, Tricoli V, Viveiros LL, de Rose DJ, et al. Salivary hormone and immune responses to three resistance exercise schemes in elite female athletes. J Strength Cond Res. 2011;25(8):2322–7.

    PubMed  Google Scholar 

  74. Newton RU, Kraemer WJ, Hakkinen K, Humphries BJ, Murphy AJ. Kinematics, kinetics, and muscle activation during explosive upper body movements. J Appl Biomech. 1996;12(1):37–43.

    Google Scholar 

  75. Jidovtseff B, Croisier J-L, Scimar N, Demoulin C, Maquet D, Crielaard J-M. The ability of isoinertial assessment to monitor specific training effects. J Sports Med Phys Fit. 2008;48(1):55–64.

    CAS  Google Scholar 

  76. Cronin JB, McNair PJ, Marshall RN. Force-velocity analysis of strength-training techniques and load: implications for training strategy and research. J Strength Cond Res. 2003;17(1):148.

    PubMed  Google Scholar 

  77. Suchomel T, Taber C, Sole C, Stone M. Force-time differences between ballistic and non-ballistic half-squats. Sports. 2018;6(3):79.

    PubMed Central  Google Scholar 

  78. Lake J, Lauder M, Smith N, Shorter K. A comparison of ballistic and nonballistic lower-body resistance exercise and the methods used to identify their positive lifting phases. J Appl Biomech. 2012;28(4):431–7.

    PubMed  Google Scholar 

  79. Loturco I, Pereira LA, Kobal R, Zanetti V, Gil S, Kitamura K, et al. Half-squat or jump squat training under optimum power load conditions to counteract power and speed decrements in Brazilian elite soccer players during the preseason. J Sports Sci. 2015;33(12):1283–92.

    PubMed  Google Scholar 

  80. Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, Gorostiaga E, González-Badillo J. Effect of movement velocity during resistance training on neuromuscular performance. Int J Sports Med. 2014;35(11):916–24.

    CAS  PubMed  Google Scholar 

  81. Cormie P, McGuigan MR, Newton RU. Changes in the eccentric phase contribute to improved stretch-shorten cycle performance after training. Med Sci Sports Exerc. 2010;42(9):1731–44.

    PubMed  Google Scholar 

  82. Suchomel TJ, Comfort P, Stone MH. Weightlifting pulling derivatives: rationale for implementation and application. Sports Med. 2015;45(6):823–39.

    PubMed  Google Scholar 

  83. Comfort P, DosʼSantos T, Thomas C, McMahon JJ, Suchomel TJ. An investigation into the effects of excluding the catch phase of the power clean on force-time characteristics during isometric and dynamic tasks: an intervention study. J Strength Cond Res. 2018;32(8):2116–29.

    PubMed  Google Scholar 

  84. Gathercole R, Sporer B, Stellingwerff T, Sleivert G. Alternative countermovement-jump analysis to quantify acute neuromuscular fatigue. Int J Sports Physiol Perform. 2015;10(1):84–92.

    PubMed  Google Scholar 

  85. Cormack SJ, Newton RU, McGuigan MR. Neuromuscular and endocrine responses of elite players to an Australian rules football match. Int J Sports Physiol Perform. 2008;3(3):359–74.

    PubMed  Google Scholar 

  86. Jidovtseff B, Quievre J, Harris NK, Cronin JB. Influence of jumping strategy on kinetic and kinematic variables. J Sports Med Phys Fit. 2014;54(2):129–38.

    CAS  Google Scholar 

  87. Volek JS, Ratamess NA, Rubin MR, Gomez AL, French DN, McGuigan MM, et al. The effects of creatine supplementation on muscular performance and body composition responses to short-term resistance training overreaching. Eur J Appl Physiol. 2004;91(5–6):628–37.

    CAS  PubMed  Google Scholar 

  88. Mackey CS, Thiele RM, Conchola EC, DeFreitas JM. Comparison of fatigue responses and rapid force characteristics between explosive- and traditional-resistance-trained males. Eur J Appl Physiol. 2018;118(8):1539–46.

    PubMed  Google Scholar 

  89. Kubo T, Hirayama K, Nakamura N, Higuchi M. Influence of different loads on force-time characteristics during back squats. J Sports Sci Med. 2018;17(4):617–22.

    PubMed  PubMed Central  Google Scholar 

  90. Sanchez-Medina L, Perez CE, Gonzalez-Badillo JJ. Importance of the propulsive phase in strength assessment. Int J Sports Med. 2010;31(02):123–9.

    CAS  PubMed  Google Scholar 

  91. Thomasson ML, Comfort P. Occurrence of fatigue during sets of static squat jumps performed at a variety of loads. J Strength Cond Res. 2012;26(3):677–83.

    PubMed  Google Scholar 

  92. McBride JM, Haines TL, Kirby TJ. Effect of loading on peak power of the bar, body, and system during power cleans, squats, and jump squats. J Sports Sci. 2011;29(11):1215–21.

    PubMed  Google Scholar 

  93. Wernbom M, Augustsson J, Thomeé R. The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med. 2007;37(3):225–64.

    PubMed  Google Scholar 

  94. Schoenfeld BJ, Ratamess NA, Peterson MD, Contreras B, Tiryaki-Sonmez G. Influence of resistance training frequency on muscular adaptations in well-trained men. J Strength Cond Res. 2015;29(7):1821–9.

    PubMed  Google Scholar 

  95. Peterson MD, Rhea MR, Alvar BA. Maximizing strength development in athletes: a meta-analysis to determine the dose-response relationship. J Strength Cond Res. 2004;18(2):377.

    PubMed  Google Scholar 

  96. Hecksteden A, Faude O, Meyer T, Donath L. How to construct, conduct and analyze an exercise training study? Front Physiol. 2018;26(9):1007.

    Google Scholar 

  97. Fyfe JJ, Bishop DJSN. Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med. 2014;44(6):743–6.

    PubMed  Google Scholar 

  98. Gonzalo-Skok O, Tous-Fajardo J, Moras G, Arjol-Serrano JL, Mendez-Villanueva A. A repeated power training enhances fatigue resistance while reducing intraset fluctuations. J Strength Cond Res. 2019;33(10):2711–21.

    PubMed  Google Scholar 

  99. Lake JP, Lauder MA, Smith NA. Barbell kinematics should not be used to estimate power output applied to the barbell-and-body system center of mass during lower-body resistance exercise. J Strength Cond Res. 2012;26(5):1302–7.

    PubMed  Google Scholar 

  100. Farinatti P, CastinheIiras Neto G, AmorIim P. Oxygen consumption and substrate utilization during and after resistance exercises performed with different muscle mass. Int J Exerc Sci. 2016;9(1):77–88.

    PubMed  PubMed Central  Google Scholar 

  101. Crewther B, Cronin J, Cook C. Possible stimuli for strength and power adaptation: acute hormonal responses. Sports Med. 2006;36(3):215–38.

    PubMed  Google Scholar 

  102. Morton R, Oikawa SY, Wavell C, Mazara N, McGlory C, Quadrilatero J, et al. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol. 2016;121(1):129–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kraemer W, Ratamess N, Nindl B. Recovery responses of testosterone, growth hormone, and IGF-1 after resistance exercise. J Appl Physiol. 2017;122(3):549–58.

    CAS  PubMed  Google Scholar 

  104. Ratamess N, Falvo M, Mangine G, Hoffman J, Faigenbaum AD, Kang J. The effect of rest interval length on metabolic responses to the bench press exercise. Eur J Appl Physiol. 2007;100(1):1–17.

    PubMed  Google Scholar 

  105. Thornton M, Potteiger J. Effects of resistance exercise bouts of different intensities but equal work on EPOC. Med Sci Sports Exerc. 2002;34(4):715–22.

    PubMed  Google Scholar 

  106. Tillin NA, Pain MTG, Folland J. Explosive force production during isometric squats correlates with athletic performance in rugby union players. J Sport Sci. 2013;31(1):66–76.

    Google Scholar 

  107. Dousset E, Avela J, Ishikawa M, Kallio J, Kuitunen S, Kyröláinen H, et al. Bimodal recovery pattern in human skeletal muscle induced by exhaustive stretch-shortening cycle exercise. Med Sci Sports Exerc. 2007;39(3):453–60.

    PubMed  Google Scholar 

  108. Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31(10):725–41.

    CAS  PubMed  Google Scholar 

  109. Bosco C, Luhtanen P, Komi P. A simple method for measurement of mechanical power in jumping. Eur J Appl Physiol Occup Physiol. 1983;50(2):273–82.

    CAS  PubMed  Google Scholar 

  110. Dobbin N, Hunwicks R, Highton J, Twist C. Validity of a jump mat for assessing countermovement jump performance in elite rugby players. Int J Sports Med. 2016;38(02):99–104.

    PubMed  Google Scholar 

  111. Sands WA, McNeal JR, Ochi MT, Urbanek TL, Jemni M, Stone MH. Comparison of the Wingate and Bosco anaerobic tests. J Strength Cond Res. 2004;18(4):810–5.

    PubMed  Google Scholar 

  112. Bosco C, Komi PV, Tihanyi J, Fekete G, Apor P. Mechanical power test and fiber composition of human leg extensor muscles. Eur J Appl Physiol Occup Physiol. 1983;51(1):129–35.

    CAS  PubMed  Google Scholar 

  113. Elliot B, Wilsom G, Kerr G. A biomechanical analysis of the sticking region in the bench press. Med Sci Sports Exerc. 1989;21(4):450–62.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Mr David Honeyman for his guidance in applying the search criteria for this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex O. Natera.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Alex Natera, Marco Cardinale and Justin Keogh declare they have no conflict of interest relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natera, A.O., Cardinale, M. & Keogh, J.W.L. The Effect of High Volume Power Training on Repeated High-Intensity Performance and the Assessment of Repeat Power Ability: A Systematic Review. Sports Med 50, 1317–1339 (2020). https://doi.org/10.1007/s40279-020-01273-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-020-01273-0

Navigation