Skip to main content
Log in

Remarkably Efficient Carbon-Supported Nanostructured Platinum-Bismuth Catalysts for the Selective Electrooxidation of Glucose and Methyl-Glucoside

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Pt/C and Pt9Bi1/C catalysts are synthesized by wet chemistry, characterized by physicochemical and electrochemical methods, and evaluated towards glucose and methyl-glucoside electrooxidation in alkaline medium. Pt9Bi1/C leads to onset potentials 150 to 350 mV lower than those recorded on Pt/C for glucose and methyl-glucoside oxidation, respectively. From in situ infrared spectroscopy, main reaction products of glucose and methyl-glucoside oxidation are gluconate and methyl-glucuronate, respectively. Chronoamperometry is performed for 6 h in a 25-cm2 electrolysis cell fitted with a Pt9Bi1/C anode to oxidize 18.0 g L−1 glucose and 19.4 g L-1 methyl-glucoside at cell voltages of 0.30 V and 0.50 V, respectively, and a Pt/C cathode to produce hydrogen. Analyses of the reaction products by high-performance liquid chromatography, by 13C nuclear magnetic resonance, and by mass spectroscopy indicate that gluconate and methyl-glucuronate are formed with 100% faradaic efficiency and 100% selectivity at 40% glucose and 37% methyl-glucoside conversions, respectively.

Pt9Bi1/ electrocatalyst is the most outstanding one for the electrooxidation of glucose and methyl-glucoside in terms of activity, selectivity, and faradaic yield towards high value-added gluconate and methyl-glucuronate compounds, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.A. Andrews, S.A. Laeren, G. L. Gould, in Carbohydrates as organic raw materials II, ed. G. Descotes (VCH, Weinheim, 1993), pp. 3–27

  2. C. Chatterjee, F. Pong, A. Sen, Chemical conversion pathways for carbohydrates. Green Chem. 17, 40 (2015)

    CAS  Google Scholar 

  3. I. M. O’Hara, Z. Zhang, W.O. Doherty, C.M. Fellows, in Green chemistry for environmental remediation, ed. R. Sanghi, V. Singh (John Wiley & Sons, Inc., Salem, 2011), pp. 506–560

  4. M. Benoit, A. Rodrigues, Q. Zhang, E. Fourré, K. De Oliveira Vigier, J.M. Tatibouët, F. Jérôme, Depolymerization of cellulose assisted by a nonthermal atmospheric plasma, Angewandte Chemie Int. Ed. 50, 8964 (2011)

  5. M. Benoit, A. Rodrigues, K. De Oliveira Vigier, E. Fourré, J. Barrault, J.M. Tatibouët, F. Jérôme, Combination of ball-milling and non-thermal atmospheric plasma as physical treatments for the saccharification of microcrystalline cellulose. Green Chem. 14, 2212 (2012)

    CAS  Google Scholar 

  6. Q. Zhang, M. Benoit, K. De Oliveira Vigier, J. Barrault, F. Jérôme, Pretreatment of microcrystalline cellulose by ultrasounds: effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose. Green Chem. 15, 963 (2013)

    CAS  Google Scholar 

  7. S. Carrettin, P. Mc Morn, P. Johnston, K. Griffin, C.J. Kiely, G.A. Attard, G.J. Hutchings, Oxidation of glycerol using supported gold catalysts. Top. Catal. 27, 131 (2004)

    CAS  Google Scholar 

  8. R.A. Sheldon, J. Dakka, Heterogeneous catalytic oxidations in the manufacture of fine chemicals. Catal. Today 19, 215 (1994)

    CAS  Google Scholar 

  9. R.A. Sheldon, The E factor 25 years on: the rise of green chemistry and sustainability. Green Chem. 19, 18 (2017)

    CAS  Google Scholar 

  10. P. Gallezot, Conversion of biomass to selected chemical products. Chem. Soc. Rev. 41, 1538 (2012)

    PubMed  CAS  Google Scholar 

  11. M.J. Climent, A. Corma, S. Iborra, Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chem. 13, 520 (2011)

    CAS  Google Scholar 

  12. A. Tathod, T. Kane, E.S. Sanil, P.L. Dhepe, Solid base supported metal catalysts for the oxidation and hydrogenation of sugars. J. Mol. Catal. A Chem. 388-389, 90 (2014)

    CAS  Google Scholar 

  13. N.J. Davis, S.L. Flitsch, Selective oxidation of monosaccharide derivatives to uronic acids. Tetrahedron Lett. 34, 1181 (1993)

    CAS  Google Scholar 

  14. E.J. Arjan, D. Nooy, A.C. Besemer, H. van Bekkum, Selective oxidation of primary alcohols mediated by nitroxyl radical in aqueous solution. Kinetics and Mechanism. Tetrahedron 51(8023) (1995)

  15. Y. Hua, L. Huaqing, D. Zhiping, W. Yuanxin, Synthesis of glucuronic acid from methyl glucoside by heterogeneous selective catalytic oxidation. Chem. Eng. J. 207-208, 72 (2012)

    Google Scholar 

  16. P.J. Chen, C.H. Chiu, J.K. Tseng, K.T. Yang, Y.C. Chen, Ameliorative effects of D-glucuronolactone on oxidative stress and inflammatory/fibrogenic responses in livers of thioacetamide-treated rats. J. Funct. Foods 14, 154162 (2015)

    Google Scholar 

  17. R. Beerthuis, G. Rothenberg, N.R., Shiju, Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables, Green Chem. 17, 1341 (2015)

  18. P.N. Amaniampong, Q.T. Trinh, K. De Oliveira Vigier, D.Q. Dao, N.H. Tran, Y. Wang, M.P. Sherburne, F. Jérôme, Synergistic effect of high-frequency ultrasound with cupric oxide catalyst resulting in a selectivity switch in glucose oxidation under argon. J. Am. Chem. Soc. 141, 14772 (2019)

    PubMed  CAS  Google Scholar 

  19. Y. Hua, D. Zhiping, Y. Zhiguo, W. Yuanxin, Selective oxidation of primary alcohol from methyl glucoside over Pd/La0.5Pb0.5Mn0.9Sn0.1O3 catalyst. Acta Chim. Sin. 67, 345 (2009)

    Google Scholar 

  20. M. Omri, M. Becuwe, C. Davoisne, G. Pourceau, A. Wadouachi, Nitroxide supported on nanometric metal oxides as new hybrid catalysts for selective sugar oxidation. J. Colloid Interface Sci. 536, 526 (2019)

    PubMed  CAS  Google Scholar 

  21. M.M. Zhao, J. Li, E. Mano, Z.J. Song, D.M. Tschaen, Oxidation of primary alcohols to carboxylic acids with sodium chlorite catalyzed by TEMPO and bleach: 4-methoxyphenylacetic acid. Org. Synth. 81, 195 (2005)

    CAS  Google Scholar 

  22. D. S. P. Cardoso, B. Šljukic, D. M. Santos ́and C. A. C. Sequeira, Organic electrosynthesis: from laboratorial practice to industrial applications, Org. Process. Res. Dev. 21, 1213 (2017)

  23. M. Simões, S. Baranton, C. Coutanceau, Electrochemical valorisation of glycerol. ChemSusChem 5, 2106 (2012)

    PubMed  Google Scholar 

  24. A. Zalineeva, M. Padilla, U. Martinez, A. Serov, K. Artyushkova, S. Baranton, C. Coutanceau, P.B. Atanassov, Self-supported PdxBi catalysts for the electrooxidation of glycerol in alkaline media. J. Am. Chem. Soc. 136(3937), 3937–3945 (2014)

    PubMed  CAS  Google Scholar 

  25. T. Rafaïdeen, S. Baranton, C. Coutanceau, Highly efficient and selective electrooxidation of glucose and xylose in alkaline medium at carbon supported alloyed PdAu nanocatalysts. Appl. Catal. B Environ. 243(641) (2019)

  26. P. Gallezot, Selective oxidation with air on metal catalysts. Catal. Today 37, 405 (1997)

    CAS  Google Scholar 

  27. J. Cobos-Gonzalez, S. Baranton, C. Coutanceau, A systematic in situ infrared study of the electrooxidation of C3 alcohols on carbon-supported Pt and Pt−Bi catalysts. J. Phys. Chem. C 120, 7155 (2016)

    Google Scholar 

  28. J. Cobos-Gonzalez, S. Baranton, C. Coutanceau, Development of bismuth-modified PtPd nanocatalysts for the electrochemical reforming of polyols into hydrogen and value-added chemicals. Chem. Electro. Chem 3, 1694 (2016)

    Google Scholar 

  29. B.S.R. Kouamé, S. Baranton, P. Brault, C. Canaff, W. Chamorro-Coral, A. Caillard, K. De Oliveira Vigier, C. Coutanceau, Insights on the unique electro-catalytic behavior of PtBi/C materials. Electrochim. Acta 329, 135161 (2019)

    Google Scholar 

  30. S. Lankiang, M. Chiwata, S. Baranton, H. Uchida, C. Coutanceau, Oxygen reduction reaction at binary and ternary nanocatalysts based on Pt, Pd and Au. Electrochim. Acta 182, 131 (2015)

    CAS  Google Scholar 

  31. B. Beden, C. Lamy, in Spectroelectrochemistry: theory and practice, ed. R. J. Gale (Plenum Press, New York, 1988), pp 189–2.61

  32. A. Kabbabi, R. Faure, R. Durand, B. Beden, F. Hahn, J.M. Léger, C. Lamy, In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum–ruthenium bulk alloy electrodes. J. Electroanal. Chem. 444, 41 (1998)

    CAS  Google Scholar 

  33. B.E. Warren, X-ray diffraction (Dover Publications, Inc., New York, 1990) pp. 251-254

    Google Scholar 

  34. M. Simoes, S. Baranton, C. Coutanceau, Enhancement of catalytic properties for glycerol electrooxidation on Pt and Pd nanoparticles induced by Bi surface modification. Appl. Catal. B Environ. 110, 40 (2011)

    CAS  Google Scholar 

  35. M.M. Tusi, N.S.O. Polanco, S.G. Da Silva, E.V. Spnacé, A.O. Nato, The high activity of PtBi/C electrocatalysts for ethanol electro-oxidation in alkaline medium. Electrochem. Commun. 13, 143 (2011)

    CAS  Google Scholar 

  36. J. Clavilier, J.M. Feliu, A. Aldaz, An irreversible structure sensitive adsorption step in bismuth underpotential deposition at platinum electrodes. J. Electroanal. Chem. 243, 419 (1988)

    CAS  Google Scholar 

  37. W. Zuo, W. Zhu, D. Zhao, Y. Sun, Y. Li, J. Liu, X. W. Lou, Bismuth oxide: a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries, energy environ. Sci. 9, 2881 (2016

  38. M. Simões, S. Baranton, C. Coutanceau, Influence of bismuth on the structure and activity of Pt and Pd nanocatalysts for the direct electrooxidation of NaBH4. Electrochim. Acta 56, 580 (2010)

    Google Scholar 

  39. S. Ghosh, Y. Holade, H. Remita, K. Servat, P. Beaunier, A. Hagège, K.B. Kokoh, T.W. Napporn, One-pot synthesis of reduced graphene oxide supported gold-based nanomaterials as robust nanocatalysts for glucose electrooxidation. Electrochim. Acta 212(864) (2016)

  40. L. Yan, A. Brouzgou, Y. Meng, M. Xiao, P. Tsiakaras, S. Song, Efficient and poison-tolerant PdxAuy/C binary electrocatalysts for glucose electrooxidation in alkaline medium. Appl. Catal. B Environ. 150-151, 268 (2014)

    CAS  Google Scholar 

  41. L. Demarconnay, S. Brimaud, C. Coutanceau, J.M. Léger, Ethylene glycol electrooxidation in alkaline medium at multi-metallic Pt based catalysts. J. Electroanal. Chem. 601, 169 (2007)

    CAS  Google Scholar 

  42. B. Beden, F. Largeaud, K.B. Kokoh, C. Lamy, Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of d-glucose: identification of reactive intermediates and reaction products. Electrochim. Acta 41, 701 (1996)

    CAS  Google Scholar 

  43. C.J. Pouchert, The Aldrich Library of Infrared Spectra, 3rd edn. (Aldrich Chemical Company, Inc., Milwaukee, 1981)

    Google Scholar 

  44. Spectral Database for Organic Compounds (SDBS), National Institute of Advanced Industrial Science and Technology (AIST-Japan); http://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi. (Accessed September 2019)

  45. A. Couto, A. Rincón, M.C. Pérez, C. Gutiérrez, Adsorption and electrooxidation of carbon monoxide on polycrystalline platinum at pH 0.3–13. Electrochim. Acta 46, 1285 (2001)

    CAS  Google Scholar 

  46. Y.-X. Jiang, S.-G. Sun, N. Ding, Novel phenomenon of enhancement of IR absorption of CO adsorbed on nanoparticles of Pd confined in supercages of Y-zeolite. Chem. Phys. Lett. 344, 463 (2001)

    CAS  Google Scholar 

  47. A. Dailey, J. Shin, C. Korzeniewski, Ethylene glycol electrochemical oxidation at platinum probed by ion chromatography and infrared spectroscopy. Electrochim. Acta 44, 1147 (1998)

    CAS  Google Scholar 

  48. L. Dubau, F. Hahn, C. Coutanceau, J.M. Léger, C. Lamy, On the structure effects of bimetallic PtRu electrocatalysts towards methanol oxidation. J. Electroanal. Chem. 554-555, 407 (2003)

    CAS  Google Scholar 

  49. N.W. Smirnova, O.A. Petrii, A. Grzejdziak, Effect of ad-atoms on the electro-oxidation of ethylene glycol and oxalic acid on platinized platinum. J. Electroanal. Chem. 251, 73 (1988)

    CAS  Google Scholar 

  50. V. Climent, N. García-Aríá and J.-M. Feliu, in Fuel cell catalyst, a surface science approach, ed. M. T. M. Koper, (Wiley, Hoboken, 2009), pp. 209–244

  51. H.W. Lei, B. Wu, C.S. Cha, H. Kita, Electro-oxidation of glucose on platinum in alkaline solution and selective oxidation in the presence of additives. J. Electroanal. Chem. 384, 103 (1995)

    Google Scholar 

  52. M. Pasta, F. La Mantia, Y. Cui, Mechanism of glucose electrochemical oxidation on gold surface. Electrochim. Acta 55, 5561 (2010)

    CAS  Google Scholar 

  53. Y. Holade, K. Servat, T.W. Napporn, C. Morais, J.-M. Berjeaud, K.B. Kokoh, Highly selective oxidation of carbohydrates in an efficient electrochemical energy converter: cogenerating organic electrosynthesis. ChemSusChem 9, 252 (2016)

    PubMed  CAS  Google Scholar 

  54. S. Ernst, J. Heitbaum, C.H. Hamann, The electrooxidation of glucose in phosphate buffer solutions: Part I. Reactivity and kinetics below 350 mV/RHE. J. Electroanal. Chem. Interfacial Electrochem. 100, 173 (1979)

    CAS  Google Scholar 

  55. S. Blais, G. Jerkiewicz, E. Herrero, J.M. Feliu, New insight into the electro-oxidation of the irreversibly chemisorbed bismuth on Pt (111) through temperature-dependent research. J. Electroanal. Chem. 519, 111 (2002)

    CAS  Google Scholar 

  56. M.B.C. de Souza, R.A. Vicente, V.Y. Yukuhiro, C.T.G.V.M.T. Pires, W. Cheuquepan, J.L. Bott-Neto, J. Solla-Gullon, P.S. Fernandez, Bi-modified Pt electrodes toward glycerol electrooxidation in alkaline solution: effects on activity and selectivity. ACS Catal. 9, 5104 (2019)

  57. M. Watanabe, S. Motoo, Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J. Electroanal. Chem. 60, 267 (1975)

    CAS  Google Scholar 

  58. Y.Y. Tong, H.S. Kim, P.K. Babu, P. Waszczuk, A. Wieckowski, E. Oldfield, An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst. J. Am. Chem. Soc. 124, 468 (2002)

    PubMed  CAS  Google Scholar 

  59. Z. Zhang, P. Gibson, S. Clark, G. Tian, P. Zanonato, L. Rao, Lactonization and protonation of gluconic acid: a thermodynamic and kinetic study by potentiometry, NMR and ESI-MS. J. Solut. Chem. 36, 1187 (2007)

    CAS  Google Scholar 

  60. C. Coutanceau, S. Baranton, Electrochemical conversion of alcohols for hydrogen production: a short overview, WIRE Energy and Environment, 388 (2016)

  61. Energy prices and costs in Europe - 2019 – Enerdata. Report from the commission to the European parliament, the Council, the European Economic and Social Committee and the Committee of the regions: energy prices and costs in Europe. https://www.enerdata.net › about-us › company-news (Accessed October 2019)

  62. A.T. Governo, L. Proença, P. Parpot, M.I.S. Lopes, I.T.E. Fonseca, Electro-oxidation of D-xylose on platinum and gold electrodes in alkaline medium. Electrochim. Acta 49, 1535 (2004)

    CAS  Google Scholar 

  63. S. Song, K. Wang, L. Yan, A. Brouzgou, Y. Zhang, Y. Wang, P. Tsiakaras, Ceria promoted Pd/C catalysts for glucose electrooxidation in alkaline media. Appl. Catal. B Environ. 176-177, 233 (2015)

    CAS  Google Scholar 

  64. M. Tominaga, M. Nagashima, K. Nishiyama, I. Taniguchi, Surface poisoning during electrocatalytic monosaccharide oxidation reactions at gold electrodes in alkaline medium. Electrochem. Commun. 9, 1892 (2007)

    CAS  Google Scholar 

Download references

Funding

The authors received funding from the INCREASE Federation (FR CNRS 3707), the technogreen chair, the European communities (FEDER) through the ECONAT project, the “Région Nouvelle Aquitaine,” and the PEPS CNRS Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Coutanceau.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 2788 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neha, N., Kouamé, B.S.R., Rafaïdeen, T. et al. Remarkably Efficient Carbon-Supported Nanostructured Platinum-Bismuth Catalysts for the Selective Electrooxidation of Glucose and Methyl-Glucoside. Electrocatalysis 12, 1–14 (2021). https://doi.org/10.1007/s12678-020-00586-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00586-y

Keywords

Navigation